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Reserved Words

and array begin case

const div do downto

else end file for

forward function goto if

in label mod nil

not of or packed

procedure program record repeat

set then to type

until var while with

if boolean-expression

then statement

else statement

Structured Statements

{optional}

case case-index of

case-constant: statement;

case-constant-list', statement

end

while boolean-expression

do statement

repeat

statement

until boolean-expression

for control-variable :— initial-value to (or downto} final-value

do statement

with record-variable-list

do statement

ordinal real

enumerated char integer boolean

subrange

record array file

packed

I

string

set

(continued inside back cover)
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Preface

' The abuse of truth ought to be as much

punished as the introduction offalsehood.
'

Blaise Pascal, Pens'ees

The purpose of this manual is to provide a correct, comprehensive, and

comprehensible reference for Pascal. Although the official Standard

promulgated by the International Standards Organization (ISO) is 'correct'

by definition, the precision and terseness required by a formal standard

makes it quite difficult to understand. This book is aimed at students and

implementors with merely human powers of understanding, and only a

modest capacity for fasting and prayer in the search for the syntax or se-

mantics of a domain-type or variant-selector.

As far as possible, I have introduced and retained the technical terms

of the Standard. I recognize that many readers will use this manual as an

adjunct to the Standard, and I intend to help them understand it as well as

the language it defines. After the ISO went to the trouble of writing that:

'The activation of a procedure or function shall be the activation of the block

of its procedure-block or function-block, respectively, and shall be designated

within the activation containing the procedure or function, and all activations

that that containing activation is within.'

I cannot, in good conscience, fail to use the term 'activation' early and

often. l
I have tried, though, to use it a bit more clearly.

Besides presenting the facts, this manual illustrates some of the rea-

soning behind them. In explaining the Standard, I've tried to point out

some of the ambiguities and insecurities it addresses. Where necessary,

I've also traced the development of potentially confusing— or apparently

arbitrary— restrictions and requirements. Readers who are totally unfamiliar

with Pascal should begin with Appendix A, which presents an overview of

the language.

I would like to gratefully acknowledge the assistance of Don Baccus,

Jean Danver, Dick Dunn, Collins Hemmingway, Jim Jordan, Will

Neuhauser, Stuart Reges, Carol Sledge, Guy Steele Jr., Larry Weber, and
Tom Wilcox, who carefully read and commented on two preliminary ver-

sions of the manuscript. My friends and colleagues Sue Graham, Peter

Kessler, Kirk McKusick, Michael Powell, and Dave Presotto helped me

To be fair I should point out that the ALGOL 68 definition includes such terms as notion,

metanotion, paranotion, protonotion, and hypernotion.

ix
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many times when prayer and fasting were insufficient. I also appreciate the

aid of those ANSI/X3J9-IEEE Joint Pascal Committee members who
helped me peruse proposals, decipher documents, and stay awake during

lengthy committee meetings.

Any misprints or errors that are brought to my attention will be

corrected as quickly as possible. A bounty will be paid gladly for each first

report.

Doug Cooper

Computer Science Division

University of California

Berkeley, Ca. 94720



Introduction

The purpose of this manual is to help programmers understand the new
ISO Pascal Standard. But why is there a new Standard? What was wrong

with the Report [J&W] released by Kathleen Jensen and Niklaus Wirth in

1974? In short, the Report, despite its long tenure as a de facto standard,

became a victim of its own success in popularizing Pascal. Before we begin

to look at the new Standard, let's review some of Pascal's history.

Unlike Pascal, many languages developed during the 1960's tended to

be more elaborate versions of existing languages. PL/I, for instance, was

an unabashed amalgam of FORTRAN, ALGOL, and COBOL. Unfor-

tunately, increased power often brought excessive complexity to definition

and implementation. This led to poorly understood languages, widespread

subsetting, and a subsequent lack of program portability. Pascal represent-

ed a retrenchment toward simpler ideas of programming language design,

and a move away from the notion that complexity was equivalent to, or

necessary for, flexibility and power.

Wirth's description of his discovery of the 'simplicity' that came to

characterize Pascal is almost poetic:

'The more the ALGOL compiler project neared completion, the more van-

ished order and clarity of purpose. It was then that I clearly felt the distinct

yearning for simplicity for the first time.' [Wirth74]

Appropriately, he had modest ambitions for his new language. Wirth want-

ed:

1. To devise a language suited for teaching programming as a systematic

discipline, with fundamental concepts clearly and naturally reflected by

the language.

2. To define a language that could be reliably and efficiently implement-

ed on then available computers.

As long as Pascal was limited to these ends, minor ambiguities in its

definition caused neither users nor implementors any loss of sleep. But to

everyone's surprise— since no major commercial concern or political entity

had a vested interest in the new language's success— Pascal became enor-

mously popular during the mid 1970's. It was broadly adopted as an in-

structional language, usually at the expense of FORTRAN (see

[SIGCSE80]). 2 Pascal was also used as a development language, and bal-

lyhooed as a productivity 'discovery' in many business environments. A

However, the FORTRAN 77 standard has certainly been influenced by Pascal. This brings

to mind the saying that, although nobody knows what the most generally used language of the

1990's will look like, it will certainly be called FORTRAN.

xi



Introduction

slightly extended version of the language was implemented on a number of

microcomputers. Eventually Pascal caught the fancy of the press as being

an ultimate programming language, and the bandwagon was really under

way. Every manufacturer felt compelled to offer a Pascal processor, and

every publisher had to have a Pascal text on its list. The grey areas in

Wirth's standard became too important to ignore.

Early on, ISO TC97/SC5/WG4 (the ISO's Pascal committee) decided

that its task was to clarify Wirth's definition, even though many writers

from Wirth on down had pointed out various shortcomings in the language

itself. But as Welsh, Sneeringer, and Hoare conclude in their discussion of

the ambiguities and insecurities found in Pascal:

'Because of the very success of Pascal, which greatly exceeded the expections

of its author, the standards by which we judge such languages have also risen.

It is grossly unfair to judge an engineering project by standards which have

been proved attainable only by the success of the project itself '

[Welsh77]

Although most Pascal implementors had followed, more or less, the

same course in bringing up their versions of Pascal, a language extensions

meeting in 1978 showed that there was a wild divergence in people's no-

tions of how Pascal could, and should, be extended. 3 However, many
manufacturers— the main force in most standards organizations— felt a great

need for an official unextended Standard Pascal (even if it was not the best

of all possible Pascals), reasoning that an imperfect standard (now) is better

than uncertain progress toward a more perfect standard (later). Besides, as

Lecarme and Desjardins note in their comments on Pascal:

'[The] creation of an endless list of constructs is clearly not the right direction

to follow for the development of better programming languages. The most

unfortunate attempt in this direction is that of PL/ 1, and even its most irre-

claimable addicts and most enthusiastic eulogists always seem to find more

constructs to incorporate in it.' [Lecarme75]

The standardization process lasted about three years. Lines were soon

drawn between two distinct camps, which we can characterize, perhaps

somewhat unfairly, as being composed of Scholars and Salesmen. The
Scholars felt an urgent need for a precise, unambiguous Standard. To a

certain extent they were motivated by the desire to define Pascal in a

manner that, in theory, anyway, would allow program verification, or proofs

that a program would actually do its intended job.
4 At the same time, they

were simply rankled by obvious inconsistencies in the Standard. The Scho-

lars were always ready to point out examples of Pascal processors that had

misinterpreted [J&W] with a resultant loss of reliability or portability.

University of California, San Diego, Workshop on Systems Programming Extensions to Pas-

cal, July 1978.

An early attempt along these lines was [Hoare73b]. His (with Wirth) axiomatic definition of

Pascal was intended to provide, among other things, an axiomatic basis for formal proofs of

properties of programs.

xii
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The Salesmen gathered in the other group. They felt, with some rea-

son, that in the majority of unclear situations one interpretation was obvi-

ously the right thing, and that their employers (usually commercial interests

who presumably had the right stuff) did not need a Standard that split hairs

quite so finely. For their part, the Salesmen always stood ready to point out

examples in the Standard that were too incomprehensible to be interpreted

at all.

The British Standards Institute (BSD, as the national sponsoring body

of the new Pascal Standard, was caught in the middle. As soon as a draft

proposal came out, it would be attacked on one hand by those who felt that

it was vague and needed more detail, and on the other by those who felt

that large sections could be excised with no corresponding loss of accuracy.

Few people were surprised to see this note accompanying the responses to

the second Draft proposal:

'The sponsor [Tony Addyman] is fed up with people who complain about the

wording of the draft, and expect him or someone else to find a solution for

them to criticise next time.' [Addyman81]

The final draft of the ISO Standard describes a language that is almost

identical to Wirth's Pascal. It is a far more precise description, though, that

contains 160 BNF productions, compared to the 107 defined in [J&W]. It

includes more simple, useful examples than [J&W], but is often harder to

follow because it addresses many issues of little consequence to the average

programmer in considerably greater detail than any earlier Pascal standard.

The new Standard is ordered in a somewhat unnatural manner that con-

forms to ISO rules.

The single unanticipated extension incorporated in the ISO Pascal

Standard provides conformant array parameters. Since there was rather less

than universal agreement on the exact specification of this extension (dis-

cussed in section 9-5), the ISO Standard provides for two versions of the

language, dubbed Levels (regular Pascal) and 1 (regular plus conformant

arrays).

As a matter of fact (but not of law), the Pascal approved by the

American National Standards Institute (ANSI) and the Institute of Electri-

cal and Electronics Engineers (ANSI/IEEE770X3.97-1983) is equivalent to

Level ISO Pascal. Although this manual describes the complete ISO
Standard (ISO dp7185), all discussion of Level 1 features is confined to sec-

tion 9-5.

XIII
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1

Pascal Processors and Programs

The Pascal Standard is a set of rules that defines what a legal Pascal

program is, and explains what a processor— & mechanism that prepares for

execution, and runs such programs— is expected to do. A processor may be

an interpreter, a compiler, or any other system (complete with computer)

that can run programs. The standard doesn't specify how programs will get

from paper to computer, what the minimum capacity of any processor is, or

how a processor is activated by its users.

There are three loopholes in the picture of a precise and perfect Pascal

brought to mind by the phrase 'set of rules.' First, certain features of a Pas-

cal processor are implementation- defined. Though they may differ between

processors, they always exist. The largest valid integer is a good example of

an implementation-defined value. Second, there are some features that are

implementation- dependent. A processor may have its own version of such

features (like additional directives), or may omit them entirely. directives 86-87

The third loophole is the most difficult. The word error has a very

specific meaning within the Standard: It is a violation of a requirement of

the Standard that a conforming processor may leave undetected. 1 Errors

are violations that are caused by program data (or by implementation-

defined features), whose detection might require simulated program execu-

tion. Processors are supposed to detect as many errors as possible, or risk

being thought of as 'not of the highest quality.' However, it should be

noted that some kinds of errors are not mistakes as such, or might be quite

difficult to detect. Errors are collected in Appendix B.

Errors must be dealt with in at least one of these four ways:

1) The processor's documentation must admit that certain classes of

errors won't be detected.

2) The processor itself must announce that certain classes of errors won't

be detected.

3) If the processor detects the error when the program is being prepared

for execution, it must report it.

4) If the processor detects the error at run-time, it must report it, and

halt program execution.

A program that complies with the Standard may rely on specific

implementation- defined features or values, but can't require a particular

Thus, errors are discouraged, but violations are expressly prohibited.



1 Pascal Processors and Programs

interpretation of implementation- dependent features. Similarly, a processor

that complies with the Standard may accept programs that use language

extensions. The extensions must be documented, though, and a processor

may not require their use. Moreover, it must be able to treat the use of

extensions (and implementation-dependent features) as though they were

errors.

Some people find it disturbing that a program can produce dissimilar

results when run on different complying processors. Obviously, such a pro-

gram relies on some implementation-defined value or feature (but not an

extension); an example is a program that prints the maximum valid integer

value. Thus, a legal Pascal program may rely on implementation-defined

values even if this keeps the program from being portable. In practice,

most programmers rely on good programming style to avoid creating prob-

lems with portability.

Although Pascal implementations generally favor one-pass compila-

tion, it is not required of any processor. Indeed, it has never been an expli-

cit requirement, although the fact that the original implementation of Pascal

was a one-pass compiler (for the CDC 6000 series of computers [Wirth71])

certainly helped convince people that Pascal could be implemented

efficiently. Subsequent modifications of Pascal, however, have tended to

favor changes that are amenable to one-pass compiling.

1-1 Basic Notation

Our first step is to agree on a notation for showing proper Pascal. The
Backus- Naur Formalism, called BNF for short, uses meta- symbols to help

define the meta- identifiers we use to describe Pascal. 2 A BNF production (a

meta-identifier and its definition) precisely specifies a language's syntax, the

relative positioning of the symbols that make up a program. Every produc-

tion is ultimately reduced to terminal symbols that are not defined further.

Terminal symbols are the characters, words, and signs that Pascal programs

are written with. Pascal's complete BNF is collected in Appendix C.

Note that BNF productions don't explain the semantics, or effect, of a

programming language's features. Nor can a BNF, no matter how lengthy,

completely demonstrate what a valid Pascal program is. A program can

conform perfectly to Pascal's BNF without having a prayer of running suc-

cessfully on a computer.

The meta-symbols we'll use have been somewhat modified in the

years since Backus first came up with them, and are sometimes called an

Extended BNF, or EBNF. The main modifications let iterative constructs

replace recursive ones.

2
Meta means 'beyond'; meta-symbols describe other symbols.
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Meta-Symbol Meaning

= is defined to be

> has as an alternative definition 3

alternatively

( this
I
that ) grouping; either of this or that

[ something ] or 1 instance of something

{ something } or more instances of something

' xyz
'

the terminal symbol xyz

end of the BNF production

1-2 Tokens

The smallest individual units of a program written in any language are

called tokens. Pascal's tokens are divided into several categories. First are

the special- symbols. Dipping our feet into the BNF, we have:

special-symbol = ' +'
I

'-'
I

'*'
I

7'
I

'
='

I

'<'
I

>'
I

'['
I

']'

I '.'I7I':'I';'ITI'CI')'

I

'<>'|'<=' I'>=' I
': = '!'..'

I
word-symbol.

Some of these tokens can be recognized as mathematical symbols, and

others are borrowed from ordinary English punctuation. The tokens in the

third row are interesting because each consists of two or more characters.

However, like the word- symbols (the second class of tokens), each one is

thought of as a single symbol.

word-symbol = program
1

I
'label'

I
'const' I 'type' I

'procedure'
I 'function'

I
var'

I
begin' I end'

I
'div'

I
mod'

I
and'

I
not' I

'or'
I

in'

I
array'

I
file'

I
record'

I
set'

I
packed'

I
case'

I
of

I
for'

I
to'

I
downto'

I
do'

I
if

I
then'

I
else'

I
repeat'

I
until'

I
while'

I
with'

I goto'
I nil' .

Word-symbols are printed in bold face throughout this manual to dis-

tinguish them as Pascal reserved words, or keywords. Like the special-

symbols they are all terminal symbols, since they're given between quote

marks. They may not be redefined within a program.

A third group of tokens is the identifiers. They may be of any length,

and all of an identifier's characters are significant. This slightly extends

[J&W], which allowed 'very long' identifiers, but only promised to

differentiate between identifiers on the basis of their first eight characters.

identifier = letter { letter \ digit) .

This production says that an identifier is a letter followed by zero or more
additional letters or digits. Naturally, we must define these new meta-

identifiers as well.

The symbol '>' was added to the BNF so that productions referring to Level 1 Pascal can

be shown as 'alternative' BNFs. This device lets all syntactic references to conformant arrays

be isolated in a few sections of the Standard (section 9-5 in this book).
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letter
= 'a'l'bTc'

strings 117-119

comments 6-7

'd'l'e'l'f I'g'I'h'lT [.<f l'k'1'1'

I
'm' I

V
I
V I V I

'q'
I
V

I V I 't' I V I
V

I V I 'x' I V I z' .

digit = '0'
|
T

|

'2'
|

'3'
|

'4'
|

'5'
I

'6'
|

'7'
I

'8'
|

'9'
.

Every Pascal processor is required to recognize a character set that,

with the exceptions given below, contains the special-symbols, letters, and

digits just defined. This set of characters constitutes a reference

representation for Pascal programs. Exceptions are allowed because of

differences between the character sets used by different manufacturers and

national standards organizations. The following substitutions can be made.

Naturally, variations in font or typeface are irrelevant.

1) Upper-case letters may replace lower-case letters (except within

strings). Here are three equivalent representations of the word-

symbol program, and of the identifier Initialized:

PROGRAM PrOgRaM

2)

program

initialized INITIALIZED iNiTiAUzEd

Alternative symbols may replace certain special-symbols: 4

Reference Symbol Alternative Symbol

@ or |

(*

*)

(.

.)

Since these alternatives are equivalent to the reference symbols, a

comment, say, could begin with '{' and end with '*)'.

Since the implications of BNF productions are not always obvious at

first (or twenty-seventh) glance, syntax charts (sometimes called railroad

charts) have become popular as visual representations of the same informa-

tion.
5 We can show an identifier as:

identifier

, digit-

letter -X
^ letter*

Following the arrows leads to the same restrictions as the BNF. The short-

est legal identifier is a single letter. Longer identifiers may contain any

sequence of letters and digits as long as the identifier starts with a letter.

These identifiers are illegal, because they don't conform to the BNF,

or because they are syntactically identical to word-symbols:

Throughout this book I use the alternative symbol ] in place of " because | is much more

readable in this typeface.

Caveat emptor: Syntax charts are sometimes slightly simplified (which is one reason they're

useful). The BNF alone can serve as the final arbiter of syntax.
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Gia_Carangi a. out Program 3rdTestRun

A fourth class of token is the numbers. Their BNF productions

should be read slowly and carefully if you want to learn to appreciate the

subtlety inherent in BNF definitions. First come the signed and unsigned

numbers:

signed-number = signed-integer \ signed-real

.

unsigned-number = unsigned-integer \ unsigned-real

.

In the definition of an integer, below, note the apparently unnecessary integer 32-33

definition of a digit-sequence.

digit-sequence = digit [ digit) .

unsigned-integer = digit-sequence

.

sign = '+'|'-'
.

signed-integer = [ sign ] unsigned-integer .

Example of integers:

285 -19 +055

The digit-sequence shows up again as part of a real number's real 31-32

definition. The terminal symbol 'e' that precedes a scale-factor means
'times ten to the power.'

unsigned-real = unsigned-integer'.' fractional-part [ V scale-factor]

I
unsigned-integer

1'*' scale-factor,

fractional-part = digit-sequence .

scale-factor = signed-integer .

signed-real = [ sign ] unsigned-real

.

Example of signed and unsigned reals:

823.9 le-3 9.3725e+027 -0.79

The definition means that, in the real value 1234.5678, '1234' is an

unsigned-integer, but '5678' is merely a digit-sequence. Hairs are being

split here because the size of an unsigned-integer falls in the range bounded
by (and including) and the implementation-defined constant maxint (the

maximum legal integer value). A digit-sequence, in contrast, has no such

restriction.

Equivalent syntax charts for integer and real values lose some of the

fine distinctions of the BNF, but are a bit easier to follow.

signed-integer

<^r -j—*- digit
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signed-real

C~}cT
digit-

7
n: <s*z digit T1

The fifth category of tokens also uses the digit-sequence defined

goto 13-15 above. Labels (used with the goto statement) were unsigned-integers in

[J&W]. Now, they're digit-sequences:

label = digit-sequence

.

that are neither numbers nor character-strings (see below). Instead, they're

just sequences of digits that, according to their apparent integral values,

must fall into the range 0—9999.

The sixth variety of token is the character- string, commonly referred

to as a string. Although strings are most frequently encountered as pro-

string types 117-119 gram output, they'll come up again in conjunction with the string-types.

character-string = '"'
string-element { string-element }

'"'
.

string-element = apostrophe-image \ string-character .

apostrophe-image = ' "
' .

string-character = one-of-a-set-of-implementation-defined-characters .

Like the numbers we defined earlier, character-strings represent

values of a particular Pascal type. A one-character string denotes a value of

char 34-35 the char-type, while every longer string denotes a value of a string-type.

There is no null string in Pascal; the string "
is illegal (although ' ' is

valid).

'These are all strings.'

'-937.815e+03'
'0 0'

';' {This string is of type char]

The occasional need to quote the quote leads to the peculiarly named
apostrophe- image, which is just a doubled single-quote mark:

writeln ('I can"t dance, don"t ask me!')

directives 86-87 A seventh kind of token is called a directive, defined as:

directive = letter { letter \ digit } .

forward 86-87 forward is the only directive required by the Standard. However, additional

implementation-dependent directives may be provided— a directive that

indicates external compilation is a likely candidate. The word 'directive'

implies that the Pascal processor is being addressed at a higher level than

usual. For instance, forward informs the processor that a Pascal program is

being defined in an unusual, but syntactically correct, order.

The eighth and last token, the comment, is merely an honorary token,

since its only semantic effect is to separate other tokens, A comment
doesn't even have an official BNF, but we can describe it as:
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comment = '{' any-number-of-characters-or-lines '}'
.

with the understanding that an extra right brace may not appear within the

comment. This rule keeps comments from enclosing other comments.

{This is a comment.}

{ This is longer,

and it is also

a comment. }

Comments are ignored by a Pascal processor (except as token separa-

tors). Nevertheless, they should be included in every program to provide

documentation for program readers. Comments may appear within indivi-

dual lines of code, which lets documentation flow more smoothly in Pascal

than in languages (like FORTRAN and COBOL) that require an entire line

for each comment.

The alternative symbols '(*' and '*)' are allowed as substitutes for '{'

and '}'. Thus, '{...*)' is a legal comment, but this is certainly not recom-

mended as a regular commenting style. All alternatives are syntactically

equivalent, which means that comments can't be nested. This is often

inconvenient because segments of code that contain comments can't be

'commented out' in their entirety. In practice, many implementations treat

the two forms of comment as being separate but equal, to allow nesting.

Such processors do not conform to the Standard, though, and programs

they accept might not run elsewhere.

Token separators are important because they make Pascal programs

'free-form.' The separators—comments, empty lines, spaces (and tabs,

implicitly), and the separation of lines— can all be used to make programs

more readable. Pascal's spacing requirement is that at least one token

separator appear between identifiers, word-symbols, and unsigned-numbers.

This program heading:

program{Here's a comment. } Pascal(output);

is as legal as this one:

program Pascal (

alternative symbols 4

program heading 130

output

)

However, separators may not occur between the characters of any
token. This expression is legal:

WordCount<> 1000

but this one is invalid:

WordCount< (not equal} > 1000
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Statements

The purpose of most useful programs is to take actions that carry out algo-

rithms. Pascal's actions are statements. They fall into two categories:

simple, and structured.

Simple statements are unconditional, noniterative actions (or on occa-

sion, inactions). The most common simple statement is assignment. Pro-

cedure calls are also simple statements, even though a call may invoke a

long series of statements of any kind. The goto is a simple statement, as is

a syntactic peculiarity called an empty statement.

Structured statements, sometimes called control structures or control

statements, are used to monitor other actions. There are two sorts of struc-

tured statements— iterative statements, and conditional statements.

Iterative statements repeatedly execute an action. Two of these

boolean expressions 33-34 (repeat and while) use conditions phrased as boolean-valued expressions to

limit the number of times the action is repeated. The third iterative state-

ment (the for statement) specifies a fixed number of repetitions.

Two conditional statements choose between actions. The if statement

uses a boolean condition to decide whether or not a statement (or which of

two alternative statements) should be executed. The case statement

decides among several alternatives; it picks one action to be executed from

a variety of options.

The two final structured statements are less easily characterized. A
compound statement groups a sequence of statements into a single syntactic

action by bracketing them between the reserved words begin and end. The
with statement is really only an honorary structured statement. It allows a

records 102-112 simplified notation for accessing record-type variables, and is discussed

along with them in section 11-1.

labels 6, 13-15 The BNF of a statement lets it be prefixed with a label. Although any

statement may be labeled, restrictions on using goto statements and labels

are discussed in section 2-3.

statement = [ label"? ] ( simple-statement\ structured-statement) .

simple-statement = empty-statement\ assignment-statement

I
procedure-statement\ goto-statement

.

structured-statement = compound-statement
I
conditional-statement

I
repetitive-statement] with-statement

.

conditional-statement = if-statement\ case-statement

.

repetitive-statement = repeat-statement] while-statement] far-statement

.



Assignment Statements 2-1

A semicolon ( ; ) serves as a statement separator. It is not a statement

terminator (as it is in some other languages). Thus, a semicolon isn't ever

the last terminal symbol in a statement's BNF. However, semicolons are

used to terminate program parts, definitions, headings, etc.— they play a

different syntactic role in such cases.

2-1 Assignment Statements

The assignment statement attributes the value of an expression to a simple about expressions 39-43

or structured variable, or to a function defined by the programmer: about variables 67-71

assignment-statement = ( variable-access\ function- identifier) ': = ' expression.

For example:

Solved: = Solution <64; {assignment to boolean variable}

Matrixiij] := 1; (assignment to array component}

output] : = chr(13); (assignment to file buffer variable}

Position.x.= 3.917; (assignment to record field}

Factorial : = Factorialin — 1 )

;

(recursive assignment to function Factorial)

Current :— nil; (assignment to pointer variable}

The heart of any assignment statement is the assignment operator

': = '. Since it's a special-symbol, spaces or other separators may not appear special-symbols 3

between the colon and equals sign. Kathleen Jensen tells an interesting

story about the origin of the symbol Pascal uses for assignment.

'Traditionally, a beginning programmer is usually confused by one of the first

statements he is bound to come across:

x =x+ l

Now, any first-year algebra student knows this is wrong; hence, entering the

world of computers is equated with entering another dimension, one where

his previous skills of abstraction must be phased out and a new 'logic'

learned.' [Jensen79]

Wirth's solution (taken from ALGOL 60) was to use an assignment

operator that could not be confused with the relational operator. The
operator is usually verbalized as 'gets,' so we can informally describe an

assignment statement as:

a variable (or function) gets a value

The order of accessing the variable (on the left) and evaluating the

expression (on the right) is implementation-dependent. As a result, the

effect of weird assignments like:

x:= x + fix);

A[x] := fix)



2 Statements

where the call fix) modifies x, may vary between processors. Once a vari-

able is accessed, a single reference to it is established for the entire assign-

ment.

Assignments to function-identifiers (like the recursive assignment to

Factorial, above) are discussed in section 9-2. Explanations of the other

assignments accompany the discussions of variables and individual types.

2-1.1 Assignment Compatibility

The basic law of assignments in Pascal is that the types of a variable and its

prospective value be assignment compatible. Assignment compatibility

relies;- in part, on the rules for compatibility given below. Both sets of rules

will be referred to several times in the coming sections. Types 77 and T2

are compatible if any of these statements are true:

1)

ordinal types 97-100 2)

subrange types 99-100

base types 122-123 3)

packed types 101

string types 117-119 4)

Compatibility Rules

Tl and T2 are the same type.

Ordinal type 77 is a subrange of T2 (or vice versa) , or both of them
are subranges of the same host ordinal type.

Set types 77 and T2 are compatible if their ordinal base types are

compatible, and if either both of them, or neither of them, are

packed.

Tl and 72 are string types with the same number of components.

A variable of type Tl is assignment compatible with (and may be assigned

a value of) type T2 if any of these statements are true:

file types 125-135 1)

2)

3)

4)

5)

Assignment Compatibility Rules

Tl and T2 are the same type, but not a file-type (or a type with file

components).

Tl is real and T2 is integer.

Tl and T2 are compatible ordinal types (as described above), and the

value with type T2 falls in the range of Tl. (It's an error 1
if the

types are compatible, but the value of type T2 is out of the range of

type 77.)

77 and T2 are compatible set- types, and all the members of the value

of type T2 belong to the base type of Tl. (It's an error if any

member doesn't.)

Tl and 77 are compatible string types.

Don't forget the special meaning of error in the Standard— it is a violation that may go un-

detected. See section 1.

10



Assignment Statements 2-1

The assignment compatibility rules are easier to follow if we look at

their underlying intent. Rule 1 of assignment compatibility should be

thought of as applying to structured types. Two types are the same if their

definitions can be traced back to a common type-identifier.
2 In the following

example, types 77, 72, and T3 are the same type, because they have

effectively been defined with the same type identifier:

structured types 101

type

77 = SomeTypeldentifier;

T2 = SomeTypeldentifier;

T3 = T2;

This means that Pascal does not follow a strict rule of name equivalence of

types. If it did, types 77, T2, T3 and SomeTypeldentifier would all be

different. At the same time, structural type equivalence isn't followed

either. Two new-type definitions are not the same even if the objects they

describe are letter-for-letter identical. Also note that, because of rule 1,

two file-type variables are never assignment compatible.

Rule 2 lets integers be assigned to real variables. Since values of type

integer can generally be exactly represented as reals, such assignments

should not cause alarm in either program or processor. Of course, the

integer value will henceforth be represented, and retrieved, as a real.

Rule 3 relates to ordinal types. In Pascal, a subrange of any ordinal

type can be given a unique type-identifier, but individual values still retain

the cachet of their underlying 'host' type. Since an out-of-range assign-

ment under rule 3 might not be detectable until run-time, it is an error

rather than a violation. However, it's hard to imagine a processor that

would deliberately subvert the programmer's use of a subrange by ignoring

the error.

Rule 4 makes a roughly parallel case for assignment between set

types. In a sense, set types enjoy structural equivalence, because the com-
patibility of underlying base-types, rather than the syntax of a set-type's

definition, determines assignment compatibility. As before, an assignment

that should be invalid because a member of 72 falls out of the range of Tl

is an error— it might not be detectable at compile-time. Again, it's unlikely

that a processor would fail to detect such an error, and possibly halt pro-

gram execution.

Finally, rule 5 codifies the special status of string types in Pascal.

They, too, are assignment compatible if they're structurally equivalent— if

each has the same number of char component values.

A new-type, which is a type description (rather than an identifier), creates a type that is not

the same as any other type. See section 9.

new-types 95-96

integer 32-33

real 31-32

11



about procedures 73-75

activations 63-64

2 Statements

2-2 Procedure Statements

In Pascal, any sequence of algorithmic steps can be written as a procedure,

which is a named subprogram or subroutine. This has advantages for pro-

gramming as a systematic discipline, and for efficient program execution.

A procedure- statement, generally called a call, invokes execution of a

procedure. The procedure-block— all the definitions, declarations, and

statements that constitute the procedure— is activated, its constants are

defined and variables allocated, its identifiers are given meaning, and its

actions take place. After the procedure has run normally, the statement

that follows the call is executed.

When a procedure has formal parameters 3 declared in its heading, a

call must include a list of actual parameters (or arguments), between

parentheses, that are separated by commas and correspond to the formals

by type and position. Since calls of the required I/O procedures obey less

stringent rules, the BNF of a procedure-parameter- list allows for their spe-

cial syntax, as well as for the actual-parameter- list of ordinary procedure

calls.

procedure-statement = procedure-identifier ( [ actual-parameter-list ]

I
read-parameter-list

I
readln-parameter-list

I
write-parameter-list

I
writeln-parameter-list) .

procedure-identifier — identifier .

actual-parameter-list — ' actual-parameter {
',' actual-parameter) ')'

.

actual-parameter = expression] variable-access

I
procedure- identifier] function-identifier .

The read, readln, write, and writeln parameter lists are all discussed in sec-

tions 5 and 11-4. Parameter-lists and procedures are discussed in more
detail in section 9.

Some typical procedure statements are:

Givelnstructions;

MainBody;

PostScore;

Switch (First, Second);

Order ( abs ( Correction), round(Deviation))
;

Tabulate (1.7, 'X', Prime)

Note that in many cases the actual-parameter-list gives no hint of

whether it's composed of expressions or variable, procedure, or function

identifiers. Mark well the advice:

'If you have a procedure call with ten parameters, you probably missed some.'

[SIGPLAN82]

These are identifiers, used within the procedure, that rename the arguments of a call. See

section 9-3.

12
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The order of evaluation, accessing, and binding of the actual parame-

ters is implementation-dependent. The Standard recognizes that agreement

on a 'proper' order is impossible—who can say if left-to-right is any better,

worse, or more natural than right-to-left? An arbitrary imposition of one

order is sure to be unfair, and is liable to be ignored.

2-3 goto Statements

The goto allows an unstructured branch to a statement marked by a label.

Typically, its use in Pascal is actively discouraged. The goto statement's

BNF is:

goto-statement = ' goto' label .

Labels are declared in a label- declaration-part, at the beginning of any

program or subprogram block. Every label is required to prefix a single

statement in that block, as explained below.

label-declaration-part = [ 'label' label {
',' label) ';'

] .

label = digit-sequence

.

digit-sequence = digit { digit) .

In chart form we have:

label-declaration-part

blocks 58-59

label

C
1 to 4 digits 7

The region of a label is the block it is declared in, which includes all

blocks within that block. A goto statement may refer to a label from any-

where within the label's region. 4 However, the Standard specifically

requires that every label prefix, or go before, a single statement in the

block that immediately contains its declaration— the block the label is

declared in, but not any other block within that block. A label prefixes a

statement by appearing before it, as allowed in the BNF of a statement:

statement = [ label ' :'
] ( simple-statement

I
structured-statement ) .

Syntactically, a label may prefix any statement. However, a goto can

only jump to certain statements, and it's useless to label others. A goto

statement can only cause a jump to:

1) The statement that contains the goto (a special case of 2).

2) Another statement in the statement-sequence that the goto is part of,

or a statement in a statement-sequence that contains the goto's

statement-sequence.

Unless the label is redeclared, which removes the enclosed region from the original label's

scope. See section 6-2.

regions 59-63

13
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3) Another statement in any block that contains the goto, as long as that

statement isn't part of the action of a structured statement (aside

from the compound statement that forms a block's statement part).

We can informally rephrase condition 3 by saying that the labeled

statement must be at the outermost level of nesting in the statement part it

appears in. Naturally, when a goto causes a jump to a calling subprogram,

the called subprogram is immediately terminated, as are any intermediate

subprograms involved in the call.
5

The BNF of a statement-sequence is shown below. Notice the use of

a semicolon as a statement separator:

statement-sequence = statement {
';' statement) .

A label is distinguished by its apparent integral value, which must fall

in the range through 9999. Thus, 1 and 0001 denote the same label.

Remember that a label is a label— it is not an identifier, string, or integer.

In consequence, labels cannot be passed as parameters, stored, or modified;

expressions can't be used to denote labels; and computed gotos, whose

effect depends on the dynamic history of a program, are barred. This

prohibition adds greatly to the readability and reliability of Pascal programs.

An example of a legal goto is:

procedure LegalGoto;

label 1;

* •
. {Other definitions and declarations}

begin

1: readln(Data);

while Data < Limit

do begin

Process (Data);

if ErrorCode then goto 1

end

In LegalGoto the labeled statement— readln(Data)

—

is another statement in

the statement-sequence that contains the goto. An illegal formulation of

the same segment of code is:

{Illegal example}

if DatalsReady

then goto 1

else repeat

PromptA ndRead(Data);

1: Process(Data)

until Finished

For example, suppose a label is declared and employed in subprogram A. If A calls B, and

B calls C, and C contains a goto back to a label in the body of A, then B and C are both ter-

minated. See the discussion of activations in section 6-3.

14
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This violates the rules because Process(Data) is contained by a statement

in the goto's statement-sequence.

In Pascal programs, the goto is most appropriate when an algorithm

must be terminated in midstream. For instance, suppose that a subprogram

detects data that renders continued processing pointless. A goto to the

program's final end will halt the entire program:

program EscapeExample {input, output);

label 1;

procedure Fa/7;

begin

goto 1 ; (terminate processing}

end;

begin {EscapeExample}

1: end.

Remember that labeled statements are executed whether or not they are

arrived at via a goto. If program EscapeExample, above, ended like this:

1: writeln ('Abnormal termination')

end.

the message 'Abnormal termination' would print every time the program

ended.

2-4 Empty Statements

The BNF of the empty statement is hard to misinterpret:

empty-statement = .

Don't be mislead by the period, which just marks the end of the definition,

because an empty statement is not even a blank space. In an unnerving

moment of clarity you may even realize that, despite the best of intentions,

your programs are full of them.

An empty statement is a null action. An empty statement is usually

noticed when it constitutes the action of a structured statement. For exam-
ple, this construct is legal, even though the else portion is superfluous:

if InputlsValid then ProcessData

else;

NextStatement

15
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The statement below is also legal, even though it is liable to confuse the

casual program reader:

if InputhValid then {empty statement}

else PromptForNewInput

In some circumstances, though, an empty statement is practically

case statement 20-22 mandatory. For instance, the case statement, which executes an action that

depends on the value of a case-index, is required (on pain of error) to have

an action for the current case-index value. If one or more potential values

have no actions to instigate, the empty statement comes to the rescue with

a null action:

case Operator of

plus: x:= x +y;

minus: x:= x — v;

times: x:= x*y;

divide, modulo: {empty statement}

end

Although empty statements are invisible, they're generally found in

the vicinity of semicolons. As a result, misplaced semicolons can cause

serious semantic errors. For instance:

if Condition then; {Notice the statement separator.}

Action

The segment above is syntactically correct. However, if Condition is true,

then an empty statement (rather than Action) is executed. Action will

always be executed, regardless of Condition's value.

2-5 Compound Statements

A structured statement controls the execution of an action. Unfortunately,

an action is a human concept that may require more than one Pascal state-

ment. The compound- statement groups several statements in a way that, for

syntactic purposes, turns them into a single statement. 6
Its BNF is:

compound-statement = ' begin' statement-sequence ' end' .

statement-sequence = statement {
' ;' statement } .

In chart form:

compound statement

C
begin—^

—

+ statement 1

end

In fact, the statement-part of a program or subprogram is written as a compound statement.

16
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In effect, the begin and end of a compound statement are statement

brackets.
7 A compound statement that contains one statement:

begin Statement end

is semantically equivalent to the statement alone: 8

Statement

The action of the following compound statement exchanges the values

of x and v. No semicolon statement-separator is required before the end.

begin

Temp: = x;

*:= y,

v : = Temp

end

As a matter of programming style, though, the last statement of a

compound statement is often followed by a semicolon, even though it adds

a superfluous empty statement (between the semicolon and the end). This

practice helps prevent syntax violations that can occur when new statements

are added. For example, suppose that the writeln below was added during

debugging:

{Illegal example}

begin

Temp : = x;

x:= y,

v := Temp {Missing statement separator.}

writeln (x, y, Temp)

end

A new bug has inadvertently been introduced because the writeln isn't

separated from the assignment to y.

2-6 if Statements

The if statement is actually two statements in one.

if-statement ™ 'if' boolean-expression' then statement [ else-part] .

else-part = 'else' statement .

A syntax chart makes the BNF easier to see:

Some languages, notably C, cleverly use braces ( { and } ) as brackets, instead.

. . .except that if Statement is an if statement (see below), putting it in a compound statement

disassociates it from a following else part.

17
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ifstatement

if boolean-expression

CZ
D

then—+* statement

CZ
7

else —+* statement

A brief if statement might control an assignment:

if Argument>=0
then Argument := sqrt(Argument)\

NextStatement

boolean expressions 33-34 The boolean expression Argument>=0 is evaluated. If it is /rwe, the as-

signment is made. Otherwise, the assignment is skipped. In either case,

the next statement executed is NextStatement.

An if statement with an else portion provides an alternative action.

(We'll see below that an else is always the alternative of the nearest prior

then in the current statement-sequence, as long as there are no intermedi-

ate statements. ?)

if Argument>=0
then Argument := sqrt(Argument)

else writeln ('No roots for negative numbers.');

NextStatement

If the boolean condition (Argument>=0) is met the assignment is execut-

ed, otherwise the writeln procedure is called. One, and only one, of the al-

ternative actions will be executed. Again, NextStatement is the next state-

ment executed no matter what happens.

program FindSmallest (input, output);

(Finds and prints the smallest of three input integers.)

var a, b, c, Smallest: integer,

begin

writeln ('Enter three integers.');

readln (a,b,c);

if (a<=b) and (a<=c)
then Smallest : = a

else if (b<=a) and (b<=c)
then Smallest : = b

else Smallest :
= c;

writeln ('The smallest number was ', Smallest)

end.

This point is obscured in the Standard by being stated in reverse: 'An if-statement without

an else part shall not be immediately followed by the token else.' [6.8.3.4]

18
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Notice the position of semicolon statement-separators in the exam-

ples. Were a semicolon to appear adjacent to a then or else, it would al-

most certainly be in error. A semicolon immediately after a then or an

else:

if Bl then ; SI

if B2 then S2 else ; S3

means that the if statement controls an empty statement. Although this is

syntactically legal, it is usually semantically undesirable. A semicolon be-

fore an else:

if Bl then Si; else 52;

leaves the else dangling. It appears to be a misplaced word-symbol.

Structured statements may be nested, which means that the actions

they control can be structured statements too. When an if statement's

action is another if statement, an else portion is the alternative of the

nearest prior if (as long as there haven't been any extraneous intermediate

statements). For example:

if Sleepy

then if Grumpy

then writeln ('Sleepy and Grumpy.')

else writeln ('Sleepy but not Grumpy.')

else writeln ('Not Sleepy, and who knows about Grumpy?')

This prose addendum to the if statement's BNF is needed because, in for-

mal terms, it is ambiguous. This means that the BNF alone isn't sufficient

to define the association of nested if statements. 10

If it becomes necessary to change the normal association of then and

else parts, the compound statement comes to the rescue by putting the

closest then part in a different statement sequence.

if Sleepy

then begin

if Grumpy

then writeln ('Sleepy and grumpy.')

end else writeln ('Not Sleepy, and who knows about Grumpy?')

Although indenting statements has absolutely no effect on program

semantics— the processor couldn't care less— most programmers use inden-

tation to clarify the association of statements. Try to trace the effect of this

poorly-indented program segment:

It could be defined in an unambiguous way, but that would really complicate the BNF. See

the Dragon Book [Aho77], section 4.3, for a brief discussion of this issue.
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if Numerator =0 then if

Denominator =0
then writeln ( 'Indefinite') else

writeln ('Infinite') else writeln

(Numerator/ Denominator)

The sequence of if statements shown below is also prone to error:

if Bl then SI;

if B2 then S2;

if B3 then S3;

if 5a/ then Sn

Suppose that the conditions Bl- • • Bn are mutually exclusive; i.e., that only

one of them is supposed to be met. What happens if a statement S. has the

effect of altering the outcome of condition B.+m , for w^l? More than

one of the supposedly alternative actions may be taken.

An additional problem is that (for exclusive alternatives) the scheme

shown above is quite inefficient, since all remaining boolean conditions will

have to be evaluated regardless of which is true. A better model uses a

nested structure, since any remaining statements can be short-circuited—

skipped entirely.

if Bl then SI

else if B2 then S2

else if B3 then S3

else if Bn then Sn

2-7 case Statements

ordinal types 97-100 The case statement uses an ordinal-valued expression to determine which

of a sequence of alternative statements should be executed. In the BNF
below, the expression is called the case- index, and values it may have are

case- constants. A list of case-constants, and the action they invoke, are

together called a case- list- element.

case-statement = ' case' case-index ' of

case-list-element {
';' case-list-element} [

';'
] 'end' .

case-index = expression .

case-list-element = case-constant-list ' :' statement

.

case-constant-list = case-constant { V case-constant) .

case-constant = constant

.

constant = [ sign] ( unsigned-numberl constant-identifier) I
character-string

.
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Case-constants are not the same as labels, although their appearance labels 6, 13-15

may be identical. A syntax chart is a particular relief in unraveling the

BNF.

case statement

case— expression—»- of-

j
constant—^— : —»- statement—->.

•-

—

'

T'^V
Wend

The word 'constant,' as applied to a case-constant, refers to a token or about constants 65-66, 98

identifier that is permanently designated (like a number) or defined (like a

defined constant, or a constant of an enumerated type) to denote a specific enumerated types 97-99

value. If the constant is a character-string, it must have length one (which

makes it a constant of type char).

For example, false and true are the constants of type boolean, while 1

and 2 are integer constants. In contrast, a declared variable, or another

expression that might represent any value, isn't a constant. This case

statement simulates the effect of an if statement with an else clause:

case Age>=\% of

true: writeln ('Old enough to vote.');

false: writeln ('Not old enough to vote.')

end

A more typical application might be:

program ElectionDetection {input, output);

{Keep track of American national elections.}

var Year: integer;

begin

readln ( Year) ;

case Year mod 4 of

1

2

3

end

end.

writeln ('Presidential and Congressional elections.');

writeln ('Voted last year.');

writeln ('Elections for Congress only.');

writeln ('Vote next year.')

If a case-constant doesn't require an action, the empty statement lets it

appear without any inadvertent effect, as shown in the discussion of empty
Statements. empty statements 15-16
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A small number of rules flesh out the case statement's syntax.

1) The case-index must be an expression of an ordinal type— it cannot be

real-valued. The expression is evaluated when the case statement is

executed.

2) A case statement's case-constant-lists have to be disjoint, because let-

ting one value appear in more than one list would make the statement

ambiguous. Naturally, all case-constants must be of the same ordinal

type as the case-index.

about errors l, 149-152 3) It is an error if the case-index's value does not appear as a case-

constant.

Rule 3 is a step up from [J&W], which said:

'.
. . if no such label [case-constant] is listed, the effect is undefined.'

Error status recognizes that some implementors let a case-index whose

value doesn't appear in a case-constant-list 'fall through', as though an

empty statement had been specified. The error compromise is far less

stringent than a proposed requirement that all possible values of the case-

index appear in constant-lists, or, at the very least, that the current value

appear. 11

The case statement was devised by C.A.R. Hoare, who made this

hopeful comment about its utility:

'[The case statement] was my first programming language invention, of which

I am still most proud, since it appears to bear no trace of compensating disad-

vantage.' [Hoare73]

2-8 repeat Statements

The repeat statement is the only structured statement that never

requires a compound statement to delineate its action, since the repeat and

until serve perfectly well as brackets. 12
Its syntax isn't too troublesome:

repeat-statement — 'repeat' statement-sequence ' until' boolean-expression,

statement-sequence = statement {
' ;' statement } .

In chart form, we have:

Imagine the problems the first proposal would cause for a case-index of type integer*. Actu-

ally, many implementors have extended Pascal to give the case statement an otherwise clause

that is executed if the case-index value is not found in a constant-list. This approach has be-

come the first formally proposed ANSI extension.

There has been an ongoing debate over the necessity of compound statements in languages

like Pascal, since all structured statements could easily require word-symbols as statement ter-

minators; e.g., while . . . endwhile, or do ... od, or even do . . . ob (since ob is a more

thorough reversal of do than od is). See [Harel80].
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repeat Statements 2-8

repeat statement

c
repeat—*— statement-H
until—^boolean-expression

The repeat statement is used for conditional iteration. An action is

executed, then a boolean expression is evaluated. If it is true, the repeat

statement is terminated and the next program statement (if there is one) is

executed. If the expression is false, the repeat statement's action is exe-

cuted again.

program CountDigits {input, output);

{Counts digits by repeated division.}

var InputNumber, NumberOJDigits: integer;

begin

NumberOJDigits : = 0;

writeln ('Enter an integer.');

readln (InputNumber);

write (InputNumber);

repeat

InputNumber := InputNumber div 10;

NumberOJDigits := NumberOJDigits + 1

until InputNumber =0;

writeln (' has', NumberOJDigits, ' digits.')

end.

A repeat statement whose boolean exit condition is never met is said

(disparagingly) to be an infinite loop.

{An infinite loop.)

repeat

writeln ('More fun than catching flies with one finger.')

until 1=2

Notice that since this bug has perfectly legal Pascal syntax, it can seldom be

caught in advance by a Pascal processor. The lesson to be inferred is that a

loop's action should contain a statement that ensures that the exit condition

will eventually be met.

Since the repeat statement's boolean expression is only evaluated

after the statement's action is completed, the exact point at which the

expression becomes true is irrelevant; there is no notion of a loop-and-a-

half in Pascal. However, the goto statement can provide an exceptional goto 13-15

exit from (and termination of) a repeat structure. Under normal cir-
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cumstances, though, a repeat statement's action will always be executed at

least one time. 13

2-9 while Statements

The while statement also provides for conditional repetition. Its BNF is

similar to the repeat, except that the boolean expression provides an entry

condition; it is evaluated before the statement's action is executed, instead

of afterward. Thus, the while statement's action may not be executed at

all.

while-statement
='

while' boolean-expression

*

do' statement.

Its chart equivalent is:

while statement

while—*- boolean-expression

c
D

do — statement

For example:

program A veragelnput (input, output);

{Average a sequence of integers that terminates with —999.}

var Current, Count, Sum: integer;

begin

Count.— 0;

Sum : = 0;

read (Current);

while Current<> -999
do begin

Sum : = Sum + Current;

Count: = Count+ 1;

read (Current)

end;

if Count =0
then writeln ('No input')

else writeln ('Average is ', Sum/Count)
end.

We can duplicate the effect of a while statement with if and repeat

statements. For instance:

Normal circumstances means that most folks don't use gotos to jump from structured state-

ments.
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if Condition

then repeat

Action

until not Condition

is an unnecessarily complicated semantic equivalent of:

while Condition

do Action

The while statement is another danger-zone for extra semicolons.

This innocent segment:

{An infinite loop}

while Condition do ;

begin

SI;

S2

end

creates an infinite loop (if Condition is true) because of the semicolon—and

implied empty statement— that follows the word-symbol do.

Although expressions are not required to be fully evaluated in Pascal, evaluating expressions

the programmer must proceed as though they always are. The two 39~41

incorrect schemes below, which rely on partial evaluation, are typical

sources of bugs in while statements. textfiies 131-134

{Incorrect way to skip blanks in a textfile.}

while not eo/and (input] =' ')

do get (input)

{Since every textfile ends with an end-of-line, this

model may attempt to inspect input] when eof is true.

A correct version is found in section 5-1.}

{Incorrect search of twenty-component array.}

/:= 1;

while (z<=20) and ( Vector[i]<> Sought)

do /:= /+ 1

{May attempt to inspect Vector[2\] if Sought isn't found.}

It has been pointed out that the repeat and while statements are

dreadfully similar. One expert even suggested that repeat be dropped from

the language entirely! His argument was that, in contrast to while, the

repeat statement tends to cause programming errors. Interestingly, the

exclusion was proposed as an extension— the word-symbols repeat and until

were to be added to the set of acceptable identifiers. The proposal has not

been greeted with enthusiasm.
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2-10 for Statements

The for statement provides definite iteration— it repeats an action a

specifically determined number of times.

for-statement = 'for' control-variable
1".^ initial-value

( 'to'
I
'downto' ) final-value 'At? statement .

control-variable = entire-variable .

entire-variable = variable-identifier .

initial-value = expression .

final-value — expression .

The visual equivalent of the for statement's BNF is:

for statement

for—» variable-identifier—: =

—

^expression—<( )>

—

^-expression

-downto

to

cdo—+-statement-

The for statement's lengthy syntax may obscure its best feature— it

ordinal types 97-100 can be used to 'count' iterations in any ordinal type:

for Letter := '9' downto '0'
[Letter is of type char)

do writeln (Letter);

for / :
= 1 to 5 { / is of type integer}

do Sum: = Sum + 2*/';

for ErrorCondition : = Thrashing to Deadlocked

do Test/or ( ErrorCondition)

{ Thrashing and Deadlocked are ordinal values with

the same type as the variable ErrorCondition.)

The control variable is subject to several restrictions:

variable declarations D A for statement's control variable must be declared in the variable

67-69 declaration part of the program or subprogram that immediately con-

formai parameters 79 tains it. It may not be a formal parameter, or a relatively global vari-

able.

2) The control variable must have an ordinal type. It may not be of type

real.

entire-variables 70 3) The control variable must be an entire-variable, which means that it

structured types 101 cannot be a component of a structured variable, or a variable accessed

pointers 136-142 through a pointer.
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4) After a for statement is executed, its control variable is undefined—

unless the statement has terminated abnormally (because of a goto).

5) The control variable may not be threatened (see below) within the for

statement's action, or in any subprogram defined in the same block as

the for statement.

The final rule effectively prohibits assignments to the control vari-

able.
14 However, the rule turned out to be surprisingly difficult to put into

the Standard. In his original description of Pascal, Wirth said:

'The repeated statement S must alter neither the value of the control variable

nor the final value.' [WirthJl]

[J&W] relaxed the rule a bit by requiring that the expression representing

the final value be evaluated only once:

'[The control variable alone] must not be altered by the for statement.'

[J&W]

In the first BSI Draft 'must' had been softened to:

'An error is caused if the control variable is assigned to by the repeated state-

ment or altered by any procedure or function activated by the repeated state-

ment.' [BSI79]

'Error' had roughly the same meaning then as it does now— it is a violation

that is not required to be detected. The first ISO draft went back to the

stricter limitation, saying:

'Assigning references to the control variable shall not occur with the repeated

statement.' [ISO80]

An 'assigning reference' was defined in a way that virtually precluded any

change in the value of the control variable (and would have required data

flow analysis to detect a change). A slightly reworded version of the same
restriction appeared in the second ISO draft. [ISO80]

At this point, members of various Standards Committees pointed out

that it could be prohibitively expensive to police assignments to control

variables within subprograms called by a for statement— especially if such

subprograms were processed under some future arrangement for external

compilation. What assigning reference to a control variable V can be spot-

ted easily?

1) An ordinary assignment to V.

2) Passing V as a variable-parameter to a subprogram.

3) A call of read or readln with V as a parameter.

4) The use of V as the control variable of another for statement.

blocks 58-59

variable-parameters 81-83

14 One motivation for such a rule is that allowing assignments (that might change the number
of iterations) would undermine the 'internal documentation' implied by the choice of a for

(rather than a while or repeat).
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10-11

compatibility 10-11

2 Statements

These four statements are said to threaten the control variable. A
threatening statement may not appear within the for statement, or within

any procedure or function declared in the block the for statement is used

in.

The initial- value and final- value determine the number of times a for

statement iterates. This number may be 0. Assuming that ;' is an integer

variable, neither SI nor S2, below, will be executed:

for /: = 11 to 10 do SI;

for / := 10 downtoll do S2

S3 and S4 will each be executed exactly once:

for / := 10 to 10 do S3;

for / : = 11 downto 11 do S4

Two rules apply to the initial-values' and final-values' types.

1) If the for statement's statement is executed, the types of the initial-

value and final-value must be assignment compatible with the control

variable.

2) If the for statement's statement is not executed, the types of the

initial-value and final-value are only required to be compatible with

the control variable.

Two ordinal types are compatible if they are the same type, or if one is a

subrange of the other, or if both are subranges of the same host type.
15

In effect, the control variable is a read-only variable that may be

inspected, but not altered. The Standard is unexpectedly coy on the subject

of the control variable's current value during the for statement's execution.

It simply says that:

'.
. . a progression of values is attributed to a variable that is designated the

control variable of the for statement.' [6.8.3.9]

Fortunately, an equivalent code example makes it clear that processors

must do the right thing— the control variable equals the initial-value

throughout the first iteration, and is incremented (or decremented) by 1

(or its ordinal equivalent) on successive iterations.

The expressions that provide the initial-value and final-value are only

evaluated once, when the for statement is first entered. Although the for

statement's action may change the actual values of these expressions, the

modification has no effect on the number of times the for statement's

Suppose that the type of i restricts it to values in the integer subrange 1..10. This is a legal

for statement:

for /:= 12 toll do S
because the statement's action is never invoked. This statement:

for /:= 1 toll doS
is illegal, since its action is invoked, and 11 isn't assignment compatible with i.
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action is executed. The segment below will print 'Le plus ca change...'

three times.three times.

a:= 1;

for Counter : = a to b

do begin

writeln ('Le plus ca change...');

a := —2000; {These assignments have no}

b:= 2001 (effect on the for statement.)

end
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3

Ordinary Data and Required Functions

enumerated types 97-99

The definition of a vocabulary for describing values, or data, is part of the

creation of any programming language. In Pascal, four ordered sets of

values— the required simple types—form the basic data vocabulary.

Although other simple types may be defined (as enumerated types), only

values of the required simple types may pass through the standard I/O

channels. This section briefly describes required simple types, and the

operators and required functions associated with them. Expressions, and

the role operators play in forming them, are covered in more detail in sec-

tion 4.

ordinal types 97-100

3-1 Required Simple Types

Because the values they describe form a convenient common ground

between humans and computers, the simple type identifiers real, integer,

boolean, and char are required to be recognized by every Pascal processor,

which means that they're predefined type identifiers.
1 The phrase 'simple

type' is a meta-identifier that replaces the less precise [J&W] term 'scalar

type.'

simple-type = ordinal-type
I
real-type-identifier .

ordinal-type = new-ordinal-type
I
ordinal-type- identifier .

Each simple type is an ordered group of values. Type real is different

from all the others because it is not enumerable, which means that its

values cannot be numbered. 2 Real values in Pascal have to be thought of

as being close approximations to the reals of mathematics. Although

they're ordered— 1.0 is obviously less than 1.1 — the representation and

accuracy of reals in computers varies so much that the notion of a standard

'next' real is meaningless.

Ordinal types are more well-behaved (with the exception of

implementation-defined aspects of type char). Their values can be num-
bered starting with zero (except for integer) and manipulated with the exact

same results on every Pascal processor. The BNF of ordinal-type, above,

implies the required ordinal type identifiers integer, boolean, and char, and

lets new ordinal types be defined by the programmer.

Technically, the required identifiers may be redefined. Doing so is not the right thing,

though, and you deserve what you get. Only one other type is predefined— the file type text

(see section 11-4).

"reaf is the required real-type-identifier mentioned in the BNF. However, synonyms for

real (as well as for the other required type identifiers) can be defined. See section 10-1.
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3-1.1 real

There are limits to the accuracy with which mathematical reals are

represented within computers, as well as bounds on their magnitude; thus

type real is an implementation-defined subset of the real numbers.

The BNF for constants of type real allows both positive and negative

values. It relies in part on the syntax of signed and unsigned integers, and

digit-sequences, discussed in the next section.

signed-real = [ sign ] unsigned-real

.

unsigned-real = unsigned-integer ' .' fractional-part [ V scale-factor]

I
unsigned-integer 'V scale-factor .

fractional-part = digit-sequence .

scale-factor = signed-integer .

The allowed magnitude of the scale factor is implementation-defined. A
syntax chart simplifies the BNF:

signed-real ,. .

r+~\ r—r-"*"~ri 7-—
\— \

—

r

c

* digh~) e—
*ci

~y
c
^d'8!*—

^

——**

Remember that 'e' is a synonym for 'times ten to the power of a

stated scale factor. Unless a real includes a scale factor, it must contain a

decimal point, with at last one digit (even a zero) on each side of the

decimal. Some legal real values are:

187.4 -0.2 45e-003 -1.4497e-19

Illegal reals'.

e25 10. .7391

There are four real operators. A result value is always real if:

1) both operands are real, or

2) one operand is real, and the other is integer, or

3) both operands are integer, but the real division operator (/) is used. 3

Operator Operation

+ addition
— subtraction

* multiplication

/ division

In real division, it is an error for the divisor (the denominator of a

fraction) to be zero. The results of all legal real operations are approxima-

This means that integer operands are sometimes coerced into being reals; i.e., they are tem-

porarily treated as values of type real.
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3 Ordinary Data and Required Functions

tions whose accuracy is implementation-defined, but are presumably close

to the corresponding mathematical results. Just how close they are has

been a matter of contention since computers were invented. (Does

(10/3) *3 equal 10 or 9.999. . . ?)

3-1 .2 integer

Values of type integer are whole numbers. Like real, type integer specifies

a subset— there is a 'maximum' integer value given by the required

constant- identifier maxint. Every whole number in the closed interval

— maxint. . maxint is an integer.

The integer requires a relievingly short BNF:

signed-integer = [ sign ] unsigned-integer .

unsigned-integer = digit-sequence .

digit-sequence = digit { digit) .

sign ='+'!'-'.

An equivalent syntax chart is:

signed-integer

£^ digit~r-T ~~?—

'

Since integer is an ordinal type, it is enumerable. Each integer numbers its

own ordinal position.

The integer arithmetic operators given below require integer operands.

A real that appears to have an integral value (like 10e2) won't do.

Operator Operation

+ addition
— subtraction

* multiplication

div integer division (fractional remainder is ignored)

mod modulo (the remainder of an integer division)

expressions 39-41 An expression that involves integer values is required to be correctly

evaluated if its operands, and intermediate and final results, fall within the

range — maxint through maxint.

Suppose, though, that one or both operands, or a partial or final

result, of an integer expression happens to fall outside the range — maxint

through maxint. In this circumstance, it is an error (rather than a viola-

tion) if the expression is not evaluated according to the rules of ordinary

integer arithmetic. 4

The classic problem is determining the result of the expression maxint +\. It might be

evaluated as —maxint (on one's-complement machines), or as — maxint— \ (on two's-

complement computers), or it might be detected as a violation and halt program execution.
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The div and mod operators require a few comments.

1) i div j represents a value such that:

abs ( /) — abs (j) < abs (

(

i div j) *j) <= abs ( /)

The value is zero if abs(i) is less than absij). If it isn't zero, the

value is positive if / and j have the same sign, and negative if / and j

have different signs.

2) The value of / mod j is the value of i—(k*j) for an integer value k,

such that <= ( / mod j) < j.

3) The expression i div j is an error if j is zero.

4) The expression i mod j is an error if j is zero or negative.

Note that div and mod do not necessarily give a consistent quotient and

remainder. Only for />=0 and j>0 (a restriction not mentioned in

[J&W]) does:

(

(

i div j) *j) + ( i mod j) = i

abs function 36

3-1.3 boolean

Type boolean (named after George Boole, the originator of logical calculus)

has only two members— the logical values whose required identifiers are

false and true (and have ordinal numbers zero and one). The boolean ordinal numbers 37

values establish conditions for some of the structured statements. Three structured statements

operators take exclusively boolean operands:

Operator Operation

not logical negation

or logical disjunction

and logical conjunction

Assume (for the sake of tradition) that p and q are boolean-valued

operands. Then:

not q means true if q is false, and false otherwise.

p oi q means true if either p or q is true, or if both are.

p and q means true if both p and q are true, and false otherwise.

We can express the same information with these truth tables.

not true is false

not false is true

true and true is true

true and false is false

false and true is false

false and false is false

true or true is true

true or false is true

false or true is true

false or false is false
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3 Ordinary Data and Required Functions

The relational operators also yield boolean results. Since the ordinal

numbers of false and true are zero and one (which means that false < true),

we can construct three more logical operators. If, as above, we let p and q

represent boolean values, then:

p<=q implication (p =# a)

p —q equivalence (p = q)

pOq exclusive or (p and not q) or (q and not p)

Several relationships come in handy for simplifying boolean expres-

sions. The distributive laws are:

(p or r) and (q ot r) equals (p and q) or r

(p and r) or (q and r) equals (p or q) and r

De Morgan's laws serve a similar purpose:

(not p) and (not q) equals not (p or q)

(not p) or (not q) equals not (p and q)

3-1.4 char

Like the integer type, char specifies an implementation-defined subset; but

of the set of characters. There are many different kinds of characters

(upper- and lower-case letters, digits, punctuation marks, etc.) and not all

of them are required to be visible (the non-printing ones are usually called

chr 37 control characters, and are summoned up with the chr function).

There are a number of 'standard' character sets, whose members vary

because of manufacturers' machine limitations (like the 64-character CDC
set), or because of a perceived commercial advantage in introducing a new
set. Even character sets that are accepted and employed internationally

(like the ISO character set) allow national variants so that, where possible,

natural languages will not be discriminated against. But no matter what

character set a processor accepts, the individual characters go in an order

that preserves these relationships:

1) The characters that represent the digits through 9 must be numeri-

ordfunction 36 cally ordered and contiguous. Thus:

ordCV)-ord(Q') = 1

2) The characters that represent the upper-case letters A through Z— if

they are available—must be alphabetically ordered, but not necessarily

contiguous. Thus:

ord('B')-ord('A') >= 1

3) The characters that represent the lower-case letters a through z—
again, if they are available— also must be alphabetically ordered, but

not necessarily contiguous. Again:

ord(b')-ordCa') >= 1.
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Although the characters each set contains are defined by its respective

standard, their ordering is implementation-defined (except as constrained

by the rules given above). This order is called the character set's collating

sequence. The collating sequence is the basis of any comparison between

char values. As a result, the relations 'a'<'b', 'a'O'b', and 'b'>'a' are

always true, but 'A'<'b' and 'a'<'B' are implementation-dependent. 5

When characters are used as char data values within a program, they

must be enclosed between single quote marks. This indicates that they're

being employed as constants (members) of type char, and that any other

meaning they might have as symbols, identifiers, or constants of another

type should be ignored. For example:

'4'
is the char value 4, and not the integer 4.

'*'
is the character *, and not the multiplication symbol *.

The single quote char-va\ue is a special case. It is defined as an

apostrophe- image, like this:

apostrophe-image — '
"

' .

When it is used as a constant of type char, the apostrophe-image must still

be enclosed within single quotes. This statement prints a single quote char-

acter:

writeln ("")

There is no null string in Pascal.

3-2 Required Functions

A Pascal function computes and returns a value of a simple type. Several aboutfunctions 76-78

functions must be predefined in every implementation, and are called

required functions. Every processor may recognize additional functions (like

clock or random-number functions), but they may not be required.

Functions are predefined in Pascal (and in most programming

languages) for a variety of reasons. First, they rescue the programmer
from the death of a thousand cuts— the necessity of writing the code of fre-

quently required computations (like the trigonometric and logarithmic

functions). Second, it's usually assumed that particularly accurate (and

efficient) versions of these algorithms will be implemented. Finally, certain

required functions act as magical windows into a program or implementa-

tion. They do not necessarily obey the restrictions placed on programmer-

defined functions.

Incidentally, in the ASCII character set the letters of both the upper-case and lower-case

character sets are contiguous. In the EBCDIC set, neither case is. In all circumstances, of

course, the letters are in alphabetical order.
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The required functions are grouped in the categories arithmetic,

transfer, ordinal, and boolean. I've used the following terminology in their

explanations: a function / is given an argument (usually called x). The
value represented by fix) is the result of evaluating the function call.

You'll notice that the type of the function's result frequently differs from

the type of its argument.

3-2.1 Arithmetic Functions

Except as noted, the arithmetic functions may be given either integer or

real arguments. Their result types are shown.

sqrix) Computes the value x2 (or x*x). The result is of the same type as

x. It is an error if this value doesn't exist.

sqrt(x) Determines the square root of x. Its result is a non-negative real.

It is an error if x is negative.

absix) Computes the absolute value of x i\x\). The result is of the same
type as x.

sinix), cos(x) These functions represent the sine and cosine of x, respec-

tively, where x is given in radians. The result is always real.

arctan(x) Computes the principal value of the inverse trigonometric func-

tion arctangent. The real result is in radians. 6

exp(x) The exponential function; computes e to the power x. The result

is of type real.

ln(x) Computes the real natural logarithm of x. It is an error for x to be

less than or equal to zero.
7

3-2.2 Transfer Functions

A few of Pascal's required functions do not have common mathematical

counterparts. The transfer functions are used for real coercion; they

represent their real arguments as integers. For both functions below, it is

an error if the result is not in the integers (i.e. the range —maxint.maxint).

truncix) The truncating function takes a real argument and returns its

integer portion; i.e. the greatest integer less than or equal to x for

x^O, and the least integer greater than or equal to x for x<0.

truncil.S) represents 2

trunci— 2.5) represents —2
truncil. 5074e2) represents 250

The other trigonometric functions can be built up in terms of these three. For example,

tangent = sine/cosine, secant= l/cosine, etc. Incidentally, the Standard doesn't prescribe this

but arctan is usually evaluated over the range [
— tt/2, tt/2].

Although it may not be the most efficient method, the In and exp functions are easily used

to perform exponentiation. For example, b to the power x can be expressed as exp(x*ln(b)).
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round(x) Represents x rounded to the nearest integer according to this

rule: if x is greater than or equal to zero, then round(x) equals

truncix +0.5), and if x is less than zero, then round(x) equals

truncix— 0.5).

round(2.5) represents 3

round(— 2.5) represents —3

round (2.507 4e2) represents 251

3-2.3 Ordinal Functions

The ordinal types (the simple types other than real) are enumerable, which

means that their values can be numbered, in order, starting with 0.
8 This

suggests a need for functions that describe the ordering relationship

between different values of a given type.

ord(x) The ordinal position function takes an argument of any ordinal

type, and returns as a result the ordinal number of that value within

that type. For example, ordUrue) is 1, since type boolean is defined

as ifalse, true).

succ(x) The successor function takes an argument of any ordinal type, and

returns the type's next value— the value whose ordinal number is one

greater. It is an error if no next value exists.

succ(9) represents 10

succi'8') is
'9'

succi'9') is implementation-defined, and may be an error

sued true) is an error

succ(maxint) is an error

pred(x) The predecessor function is the inverse of succ. Its result is the

value that immediately precedes the ordinal argument x— the value

whose ordinal number is one less. Again, it is an error if no such

value exists.

predO) represents 8

pred('9') represents
'8'

pred'( succ CR')) represents 'R'

predifalse) is an error

pred(chr(9)) is implementation-defined

predi'a') is implementation-defined, and may be an error

chr(x) The chr function takes an integer argument. It returns the char

value whose ordinal number equals x, if such a character exists. It is

an error otherwise.

a
Except integer, where each number describes its own ordinal position.
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3 Ordinary Data and Required Functions

When considered in terms of type char, ord and chr are inverse

functions—what one does, the other can undo. Thus:

chriordi'R')) represents 'R'

3-2.4 boolean Functions

The three final required functions have boolean-valued results. The first

(odd) is easily described, but the others (eoln and eof) are explained in

further detail in section 11-4.

oddix) The odd function takes an integer argument. Its boolean result is

true if x is odd (more precisely, if iabsix) mod 2) equals 1), and

false otherwise.

eolnif) The end-of-line function has the value true if the file buffer vari-

buffer variables 127 able f\ is positioned at the end of a line in the textfile /, and is false

otherwise. It is an error to call eolnif) if /is undefined, or if eofif)

is true. If an argument textfile (like /) is not specified, eoln applies

input 131-132 to the required file input.

eofif) The end-of-file function has the value true only if the current file

buffer variable f] is positioned at the last component of the file /, or

if /is empty. The call eofif) is an error if /is undefined. If no file

argument is given, eof applies to file input.
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4

Simple Expressions

In Pascal, as in algebra, any given value can be shown in a variety of ways.

The representation of a value is called an expression. All of these are ex-

pressions, even though not all of them contain operators, or even

identifiers: 1

10

SqrtO)

ord('K') + l

p and q
(17* (-5)) mod Quotient

Matrix[\0,21]

Box.Bin [3 ]
— IntegerFile ]

The explanation of expressions is an explanation of operators and

operands, and of the order in which they are evaluated. A trivial expression

like (10) is easily evaluated, and (1 + 1) isn't much harder. However, the

ambiguity that can arise in more complex expressions (does 10— 3*2 equal

4 or 14?) must be resolved by a scheme of operator precedence. Expres-

sions are evaluated according these rules:

1) The boolean operator not has the highest precedence.

2) The multiplying operators *, /, div, mod, and and are employed next. 2

3) The adding operators +, — , and or have lower precedence.

4) The relational operators =, <>, <, >, <=, >=, and in have the

least precedence.

Parentheses can be used to circumvent the operator precedence rules.

For example:

2*3 — 4 equals 2, but... 2*(3 — 4) equals —2

In the absence of parentheses, a sequence of two or more operators of

equal precedence is left associative. This means, for example, that 3 — 2 — 1

is the semantic equivalent of (3— 2) — 1.

The order of operand evaluation of a dyadic operator (an operator that

requires two operands) is implementation-dependent. This is an important

qualification, because it means the operands may be evaluated from left to

The expressions we'll deal with in this section all represent simple values. However, expres-

sions can represent structured values as well.

The notion of precedence cuts across type lines— the real operator /, integer operator div,

boolean operator and, and set operator * are all multiplying operators.
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4 Simple Expressions

right (in textual order), from right to left, simultaneously, or they might

not both be evaluated.

The last possibility can occur when evaluating one operand is enough

to give a value to the whole expression. For instance, the expression 0*x

need not be fully evaluated, since it always equals (unless x isn't a

number). A more likely case of truncated evaluation would involve the

boolean operators and and or. This statement relies on truncated evalua-

tion:

if (x<>0) and (//*> Limit)

then CallProcedure

Some processors, recognizing that the entire expression is false if x
equals zero (because both operands of and must be true for the entire

expression to be true), can execute this statement without trouble (since

the boolean expression is not fully evaluated). 3 Processors that do full

evaluation, on the other hand, will try to find the value of i/x— an error if

x equals 0.0.

The punch line is that when portability is a concern, making the order

of evaluation implementation-dependent loosens requirements for proces-

sors without really relaxing them for programs. Although some processors

may choose to partially evaluate certain expressions, the fact that other pro-

cessors fully evaluate all expressions makes it necessary, in practical terms,

to program as though this were always the case.
4

4-1 BNF of Expressions

A fairly complicated sequence of BNF productions codifies the scheme of

operator precedence described above. First, we have to categorize some
special-symbols and word-symbols:

multiplying-operator = '*'
I
'/'

I
'div'

I
'mod'

I
'and' .

adding-operator = ' +'
I

'

—
'

I
'or' .

relational-operator = ' ='
I

'<>'
I

'<'
I

'>'
I

'<='
I

'>='
I
'in' .

These productions establish distinct levels of precedence, given from

second-highest (multiplying operators) to lowest (relational operators).

The first and highest level is occupied by the not operator.

The meta-identifiers multipfying-operator and adding-operator are

phrases of convenience that are only marginally related to multiplication

and addition. For example, '*' might be the real multiplication operator,

the integer multiplication operator, or the set intersection operator, depend-

Assuming that they evaluate expressions in textual order.

In contrast to Pascal, a language like C specifically requires that evaluation proceed from left

to right, and that the evaluation of boolean expressions cease when the result is known.
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BNF of Expressions 4-1

ing on the types of its operands. The meaning of such operators is said to

be context-dependent.

The BNF of an expression is set up in a clever way that associates

each level of the operator hierarchy with a particular breed of subexpres-

sion. The more 'irreducible' a subexpression is, the higher is the pre-

cedence of any operators its BNF allows. A factor, which can include the

not operator, is the most elemental expression. A term may be a factor, or

it can be two or more factors joined by a multiplying operator. A simple-

expression, in turn, can be a term (which implies that it might even be a

mere factor), or it can be formed from (possibly signed) terms and adding

operators. Finally, an honest-to-goodness expression may be a simple-

expression, or a term, or a factor, or any pair of these along with a rela-

tional operator. 5

expression = simple-expression [ relational-operator simple-expression ] .

simple-expression — [ sign ] term [ adding-operator term } .

term = factor { multiplying-operator factor) .

factor > variable-access
I
unsigned-constant

I
function-designator

I
set-constructor

I

' (' expression ')'
I 'not' factor .

Notice a neat trick in the definition of factor. When an expression is

enclosed in parentheses, it reverts to the humble status of a factor.

Because the definition of an expression is recursive— circular, because it

relies on its own definition— the length of expressions is not limited. 6

Tracing the BNF of a factor requires some legwork. '(' expression ')'

and not factor are self-referencing, and don't add much light. A Junction-

designator is a function call— a function's identifier, along with any argu-

ments that are required. Set-constructors denote set-type values, and are

discussed in section 11-3. An unsigned-constant is:

unsigned-constant — unsigned-number \ character-string] constant-identifier\ 'nil'

unsigned-number = unsigned-integer \ unsigned-real .

An unsigned-number is a value of type integer or real that's shown
with actual numbers (e.g. 739 or 1.093). A character-string is a string-type

value— a sequence of two or more characters between single-quote marks
(like 'Patti'). Constant-identifier has a double meaning. It is either a

declared constant, or one value of an ordinal type. The final unsigned-

constant, nil, is a word-symbol that belongs to a pointer-type determined

by context.

about Junctions 76-78

strings 117-119

about constants 65-66, 98

pointer types 136-142

Pascal's BNF for expressions, simple-expressions, etc., is interesting because it attempts to

clarify a semantic issue (the precedence of operators) with a syntactic tool (the BNF). Howev-
er, the parse tree produced by following the BNF correctly reflects the precedence of operators

in Pascal expressions. A simpler BNF (say, expression = factor [ operator factor ) .) would

produce almost no useful information.

Also note that since factor is defined with a '>',
it has an alternative BNF— a factor may

also be a conformant array parameter's bound-identifier. See section 9-5.

41



4 Simple Expressions

The variable-access BNF takes us further afield:

variable-access = entire-variable \ component-variable] identified-variable\ buffer-variable .

A variable-access is a name that denotes a variable. We'll see in section 8-

2 that this isn't necessarily an identifier— variables may require 'manufac-

tured' names, or may even be anonymous.

It is an error for an undefined variable-access to appear in an expres-

sion. In this situation error status is granted largely because it is so difficult

to determine whether or not a variable has been initialized.

We can develop the syntax chart of an expression like this:

factor

^\ •(

—

^expression-

-not—*factor —
variable-access-

-unsigned-constant

set-constructor

"function-identifier JL

>

actual-parameter-list 1
term

factor

) \ \ ) )
* I div mod and

-factor* ^ * * ^ J

simple-expression

term T

term-

or

expression

simple-expression

> > > > > > >
r -

<> < > < = > = in

I I I I L I i»— simple-expression—*
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Operators 4-2

Some examples are:

factors

[1..10, 20..30]

Scalell]

not (x=5)
maxint

terms

5*10

(2-n)/z

( First< Second) and not Finished

simple-expressions

not (x= 5) or (First< Second) and not Finished

2-1-2

Scaleil]

expressions

P<= a

input] in ['A'..'Z']

4-2 Operators

As noted before, the four levels of operator precedence are:

greatestnot

div mod and * I

or + -
in =<><><= >= least

The arithmetic operators were discussed in section 3-1 as they related

to values of type real and integer. The actions of the monadic— one-
operand— arithmetic operators are summarized in Table 1, and those of the

dyadic— two-operand— arithmetic operators are given in Table 2. Some
symbols (like '+', '—

', and '*') serve double or even triple duty.

operator

Table 1. Monadic Arithmetic Operators

operation type ofoperand type of result

+ identity integer

real

integer

real

— sign inversion integer

real

integer

real

43



4 Simple Expressions

operator

Table 2. Dyadic

operation

Arithmetic Operators

type of operands type of result

+ addition integer or real

integer if both

operands are integer,

otherwise real

— subtraction integer or real

* multiplication integer or real

/ division integer or real real

div truncated division integer integer

mod modulo integer integer

Table 3 shows the boolean operators. Recall that the relational opera-

tors also have boolean result values.

operator

Table 3.

operation

Boolean Operators

type of operands type of result

not

or

and

negation

disjunction

conjunction

boolean

boolean

boolean

boolean

boolean

boolean

The set operators are given in Table 4. They are discussed in detail in

section 11-3, as is the mysterious phrase 'canonical set-of- T type.'

Table 4. Set Operators

operator operation type of operands

+ set union

set difference

set intersection

any canonical

set-of- Ttype

type of result

same as

the operands

An operator that is noticeable by its absence from Pascal is exponentiation.

Wirth deliberately omitted an exponentiation operator on the grounds that

it would complicate the processor with no corresponding gain in program

efficiency. An exponentiation operator has been proposed as a nonstandard

extension.

44



Operators 4-2

4-2.1 Relational Operators

The relational operators of Table 5 take a variety of operands, but always

yield boolean result values.

operator

Table 5. Relational Operators

type of operands

= <> any simple, pointer, or string

type, or a canonical set-of- T type

type of result

boolean

< > any simple or string type boolean

boolean
any simple or string type,

or a canonical set-of- T type

in left operand: any ordinal type T
right operand: a canonical set-of- T type

boolean

Some of the relational operators that require a single symbol in

mathematical notation are constructed from two characters in Pascal.

They're still special-symbols, though, and may not be split by spaces or

other separators.

Pascal Math English

<> ^ not equal

<= < less than or equal

>= ^ greater than or equal

With various restrictions, different relational operators (besides in)

can compare values of any compatible simple type, pointer type, string type,

or set type. Because of the implicit coercion of integer values into reals,

values of these two types may be compared. Comparisons between other

ordinal-type values are based on the ordering of values in the definition of

the type. Thus, an expression like Ca'<'A') might be either false or true,

depending on the ordering of the implementation-defined char type. The
expression Ca'<5) is a violation, since 'a' and 5 are values of different

types.

Since boolean expressions represent values of the ordinal type

boolean—whose values are false, true— they can be used as operands of the

relational operators. Suppose, as usual, that p and q are boolean expres-

sions. Then:

Expression Meaning

p =q equivalence

p<>

q

exclusive or

p<=q ^implies q

special symbols 3

compatible types 10-11
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strings 117-119

set types 121-125

about pointers 136-142

4 Simple Expressions

Under no circumstances can the relational operators be used as they are in

ordinary mathematics. For example, the mathematical expression:

5 < x < 10

is interpreted as (5<x)<=10, which is a violation in Pascal (it compares

boolean to integer). It is rewritten correctly as:

(5<x) and U<=10)

The relational operators can also compare string-type values if, and

only if, each string has the same number of characters, which makes the

strings compatible. The comparison is lexicographic, which is a formal way

of saying alphabetical. The distinction is lost on an expression like:

'cat'
<

'dog'

which is obviously true, but is necessary to evaluate expressions like:

'@&#!?!!' >= ' + -<>%*('

Lexicographic ordering is determined by the order of the collating sequence

of the constants of the implementation-defined type char.

The use of relational operators with set-type operands is somewhat
different, since set values aren't ordered. Suppose that u and v are

simple-expressions of some set type. Then:

Expression Meaning

u—v every element of u and v is identical

u<> v at least one element of u and v differs

u<= v every element of u is in v

u>=v every element of v is in w

The in operator creates an expression that is true if a given ordinal

value is an element of a set of values of a compatible ordinal type. The in

operator's right operand is a set-type value, and its left operand is an ordi-

nal value. The expression:

Letter in ['A'..'F', Pass.. Fail]

is valid if Letter, Pass, and Fail all belong to a type compatible with char

(e.g., a subrange or renaming of char). Relational expressions that involve

set operands are discussed further in section 11-3.

Finally, pointers may be compared to each other, or to the pointer

value nil. Only the equality ( = ) and inequality ( <> ) operators may be

used— there is no way to determine the relative ordering of two pointers.
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5

Textfile Input and Output 1

To most program users, the only salient feature of a language definition is

its specification for the input of data, and the output of results. The aver-

age nonprogrammer would probably be hard-pressed to distinguish between

a computer and the peripheral hardware it uses to communicate with hu-

mans.

We can divide most of the hardware into two categories. Input

devices route information into a running program. There are many such

devices— teletype keyboards, punched card readers, magnetic or paper tape

readers, light pens, videoterminal keyboards. If they're suitably fitted with

analog-to-digital converters, then gauges, sensors, thermometers, detectors,

meters, and measuring devices of every description can also be input

devices. Even a radio that relays a rocket guidance computer's flight

instructions is an input device.

Output devices display the partial or final results of a running program.

Videoterminal screens, lineprinters, paper tape and card punches, teletype

platens and keys, typesetting machines, graphics terminals—even radio

transmitters—are all output devices. Note that many pieces of equipment

we usually think of as being a single device (like a videoterminal and its

keyboard), are actually two entirely independent devices in a single box.

Since there are great differences between many input and output

devices, the idea that a Pascal Standard should or could require particular

devices is silly. Instead, the Standard requires that every processor have

so-called 'standard' input and output devices that have the characteristics of

textiles, and that these devices should provide 'legible input and output.' 2
textftles 131-134

For now, it's sufficient to say that the standard input and output

devices both use the same character set for communication with

programs— the implementation-defined group of characters that forms the

required type char. Their application within a program is signaled by the

appearance of the required identifiers input and output as program parame- input, output 131-132

ters, e.g.; program parameters

130-131

This section is not intended to supplant the discussion of file types, but to provide a reason-

able explanation of textfile I/O to readers who are totally unfamiliar with the intricacies of files

in Pascal. Aside from the description of output format, it is recapitulated in more formal

terms in section 11-4.

A file of the required type text is a textfile. Such files have the characteristics of the type file

of char, i.e. of file structures with c/?ar-valued components. However, special functions and

procedures (eoln, readln, writeln, and page) are defined for textfiles alone.
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5 Textfile Input and Output

enumerated types 97-99

external representation 48

program Foo {input, output);

although neither must appear if it is not used within the program.

Four required procedures maintain contact between a program and its

operating environment. To a certain extent they depend on input and out-

put devices to recognize lines of data. The basic input procedure read gets

values for its argument variables, while a corresponding output procedure

named write arranges to print its argument values. The second input pro-

cedure, readln ('read line'), can be used to discard partial or full input

lines, as well as to read values a la read. Similarly, a second output pro-

cedure called writeln ('write line') controls the production of distinct lines

of output, as well as printing like write.

Although many of the devices we mentioned earlier don't deal with

lines as such, many computers benefit from the buffering that line structure

allows. Input or output data can be collected, and transmitted, in more
efficient packages than a required character-by-character update would

allow.

Another convenience implemented by Pascal's I/O mechanism is the

conversion of real, integer, and, for output only, boolean values, between a

binary internal representation and the char representation needed by

textfiles. For example, a program that is attempting to read in the value of

a real-type variable recognizes the special sequence of char-type digits and

characters that denotes real values, and automatically converts it to its real

equivalent. Similarly, real values can be output (as a sequence of charac-

ters) in either floating-point or fixed-point decimal notation.

Remember that automatic conversion to char representation is only

enjoyed by values of the required simple types. Since enumerated ordinal

types have no external character representation they can neither be read

from a Pascal program's standard input, nor written to its standard output. 3

5-1 Input

The required procedures read and readln allow program input. Although

parameter lists 79 read and readln are procedure identifiers, the BNFs of their parameter lists

are different from those for ordinary parameter-lists:

read-parameter-list = '(' [file-variable'",'' ] variable-access {
',' variable-access} ')'

.

readln-parameter-list = [
'(' (file-variable] variable-access) {

',' variable-access] ')'
] .

Notice that the readln-parameter-list is optional— readln need not be given

any arguments. The BNF productions are a bit easier to follow in these

charts, which show the syntax of legal calls of read and readln.

However, allowing an external character representation for enumerated ordinal values has

been frequently proposed (and sometimes implemented) as a nonstandard extension to Pascal.

Note that type boolean is, in effect, one enumeration for which such an output conversion ex-

ists.
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Input 5-1

read call

read— ( <- »
^+*file- variable—* ,

—

-

readln call

-*—
j
—» variable-access —^—*») »

V( _
^-^file-variable -^

—

j*- —^variable-access ~^\~~T')

—

/^

-+,—J ^ >- J

y

The call read if, V) reads a value for variable V from file /. At least

one variable-access (like V) must be specified, but a file-variable argument about files 125-135

(like /) need not be given. If none is supplied, the value is read from the

required file input.*

The call readln (/ V) also reads a value for variable V from file /,

which must be a textfile. If a file-variable isn't supplied, input again comes
from the required file input. However, a variable-access argument need not

be given.

readln differs from read in the following manner: When a call of

readln is completed, any values remaining on the current input line (includ-

ing the end-of-line) are discarded. The next value read will be the first end-of-line 132

value on the next line of file / (or input). If no variable-access is supplied

as an argument to readln, the current line of input will be discarded (even

if it only contains an end-of-line).

A call of read, in contrast, does not affect any values left on the

current input line. The next value to be read will be the value that

immediately follows the last value obtained during the current call of read.

Now, when read or readln obtains a value or values for its argument
variable or variables, the line structure of file /(or input, if /isn't named)
is ignored. As a result, input data may be spread over two or more lines

without ill effect.

1) If integer or real data are being input, the end-of-line (as well as all

blank spaces) serves as a value separator.

2) If char values are being read, the end-of-line 'character' is read as a

blank space.

Both read and readln may be given more than one variable-access

argument. The call:

read (/ VI, V2,~ , Vn)

Reading from files in general is discussed in section 11-4.
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5 Textfile Input and Output

is equivalent to the sequence:

begin read if, VI); read if, V2); • • •
; read if, Vn) end

Similarly, the call:

readln if, VI, V2, • •
, Vn)

can be duplicated as:
5

begin read if, VI); read if, V2)\ • • •
; read if, Vn); readln if) end

5-1.1 Coercion of Input Data

textfiies 131-134 All data obtained from the required file input, or from any other textfile, is

of type char. As a result, reading in values for char-iype variables doesn't

require any special handling by the processor.

Getting the value of an integer variable needs more consideration.

The processor first skips over blank spaces and end-of-lines, because when
they're not being read as char values they just serve as value separators.

signed integer 5 Then it reads the longest sequence of characters that forms a signed integer.

The first nondigit encountered (after a possible leading sign character)

marks the end of the integer. This nondigit will be the first character

inspected by a subsequent call of read or readln.

Input of real values is handled the same way. First, blanks and end-

of-lines are skipped. Then, the longest sequence of characters that forms a

signed numbers 5 signed-number is read in, 'converted,' and attributed to read or readln 's

variable-access argument Why look for a signed-number, rather than a

signed- reall Because an integer value, as well as a real value, can be read

into a real variable.

What if the first nonblank (or non-end-of-line) encountered during an

attempted integer or real read isn't a sign character or a digit? This would

make the read (or readln) unable to read a numerical value for its argu-

ment. The Standard specifically states that this is an error, rather than a

violation. Similarly, it is an error, rather than a violation, if a number isn't

assignment compatible with the variable it is being attributed to. The

motivation for making these errors is that they can't be detected until run-

time. They are very likely to be detected as violations, though, and halt

execution.

5-1.2 Dealing with the end-of-line

The following program scheme is used for reading real or integer data from

a textfile / that (aside from spaces or end-of-lines used as value separators)

does not contain extraneous nonnumerical characters. It relies heavily on

details introduced in the discussion of file types in section 1 1-4.

As a result (and speaking as a Salesman) calls of the form readln (i, A[i]) do the right thing.
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(Process a file of integer or real values.}

SkipBlanks if);

while not eofif)

do begin

read if, Data);

Process (Data);

SkipBlanks if)

end

where the declaration of SkipBlanks is:

procedure SkipBlanks (var/: text);

{Skips blanks until eofif), or a nonblank is found.}

var Finished: boolean;

begin

Finished : = false;

repeat

if eofif) then Finished := /r«e

else if /t
= ' ' tnen ££* (/")

else Finished : = true

until Finished

end; [SkipBlanks)

Note that the widely used formulation shown below (and orginally

proposed in [J&W]) contains an error— it will eventually attempt to inspect

the (undefined) file buffer variable when eof'xs true.
6

procedure BadSkipBlanks (var/: text);

(Incorrect way to skip blanks.}

begin

while if]=' ') and not eofif)

do getif)

end;

As I mentioned earlier, when char values are read from a textfile, the

end-of-line is treated as though it were an ordinary space. Thus, if CI, C2,

etc., are char variables, the call:

read (CI, C2, C3, C4, C5)

when given this input:

go< newline>
toot your< newline>
horn.< newline>

This is because every textfile ends with at least one end-of-line. Thus, eof is not true im-

mediately after the final number has been read. Frankly, this is a very confusing point— the

incorrect [J&W] procedure (renamed BadSkipBlanks) that appeared in their second edition

was itself a correction of an incorrect model given in the first edition!
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5 Textfile Input and Output

will read these letters:

'*''g' 'o' '
' 't

The end-of-line (shown as <newline>) was attributed to C3 as a blank

space. The letter about to be read (by another call of read or readln) is the

second 'o' of toot.

Suppose, instead, that we make the call:

readln (CI, C2, C3, C4, C5)

The assignment of values to CI, C2, and the others will be the same as

they were before. However, the final effect of readln is to discard the

remainder of the second input line. The character about to be read after

the call is the 'h' that starts 'horn.'

Procedure readln provides a simpler scheme (that doesn't require a

procedure like SkipBlanks) for reading unknown quantities of real, integer,

or char input from a textfile /—if we know the number, and types, of the

data values on each line:

{Process a file of real, integer, or char data.}

while not eofif)

do begin

readln (f, VI, • • •
, Vn)\

Process (VI,- -
, Vn)

end

read and readln are described in terms of more primitive procedures in sec-

tion 11-4.

5-2 Output

It is a rare program that does not have output. Even programs that check

the validity of data (or of Pascal processors) and are mainly intended to

warn of violations or errors should (and usually do) issue a positive valida-

tion if no mistakes are found. A result that says 'All O.K.' is, somehow,

much more reassuring than no output at all.

Output to textfiles (including the standard output) is restricted to

values of the required simple types (real, integer, char, and boolean), and of

strings 117-119 the string-types. These values are all said to have external character

representations; they are automatically 'converted' to, and output in terms

of, an implementation-defined character set. Although the required output

procedures write and writeln don't have BNF descriptions (after all, they're

just identifiers), their parameter-lists do:

write-parameter-list ='('
[ file-variable ','

] write-parameter {
',' write-parameter) ')'

.

writeln-parameter-list = [
'('

( file-variable\ write-parameter) {
',' write-parameter} ')'

] .

write-parameter = expression [
' :' expression [

' :' expression ] ] .
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Output 5-2

The optional portions of a write-parameter are used to specify output for-

mat. As usual, a chart of valid calls of write and writeln clarifies matters.

write call

write—*( ^ »
j -^-^write-parameter—^—)

^**file- variable—* ,
—' ^ ,

-* '

writeln call

writeln

write-parameter

expression —

=cexpression

-expression

Although a file-variable may be named specifically (it must be a

textfile for writeln), we'll assume throughout this section that no file is

given, which means that the call of write or writeln applies to the required

file output. output 131-132

write collects (or possibly prints) partial output lines, while writeln

appends an end-of-line component to the partially collected line (which end-of-Une 132

includes any write-parameters that accompanied the writeln call). In practi-

cal terms, write can often be assumed to buffer its output— hold it

temporarily— while writeln actually causes the printing of a complete line of

output. 7 Thus, the segment:

write ('Enter data');

read (Data)

may halt for input without ever printing the prompt! The write should be

replaced by a writeln.

The tidy scheme I describe pours well, but it may lack a certain syrup. Although writeln

does, and write does not, append an end-of-line to each line, the actual time of output of a

write or writeln can vary widely between implementations. It is possible for the output of both

to be entirely unbuffered (and printed immediately), or be buffered in blocks of some con-

venient size (and not printed until the buffer is full). A more subtle variation uses block

buffering, but flushes the buffer whenever input is inspected (perhaps with a read or readln).

I chose the simple model (where writeln prints and write doesn't) because it conforms to

the Standard, it is often implemented, and it clearly motivates the different rationales behind

write and writeln.
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5 Textfile Input and Output

A call of writeln, with no arguments for output, ejects any current

partial line (the result of previous calls of write) by appending an end-of-

line to it. Incidentally, this is the only way an end-of-line can be generated.

If there isn't a partial line pending, and if there aren't any write-parameters,

the writeln call prints a blank line— a line whose only component is the

end-of-line.

Readers familiar with interactive videoterminals will realize that the

buffer scheme causes a slight problem. Many applications require the cur-

sor to remain at the end of the current output line. If output is buffered,

though, it may not appear until a call of writeln moves the cursor to the

next line. Fortunately, the Standard doesn't require write to buffer its par-

tial lines— partial lines may be printed while they're being collected. If

their processors work this way, authors of (possibly nonportable) menu
programs can heave a sigh of relief.

As the BNF and charts show, both write and writeln can be given a

series of expression write-parameters for output. The statement:

write ( VI, V2," , Vn)

is equivalent to:

begin write (Vl)\ write (V2); •••
; write (Vn) end

Similarly, the call:

writeln ( VI, V2,
'•

• •
, Vn)

can be duplicated as:

begin write (VI); write (V2)\ •••
; write (Vn); writeln end

5-2.1 Output Formats

To help produce neat columns or tables, all printed output is treated as

though it is right-aligned in a Procrustean field of blank spaces. If the field

is larger than the output value, blank spaces are added to the value's left

(except in floating-point real output). In most cases, if the field is too

small, characters may be lopped from the value's right end until it fits. The

actual field width may be specified like this:

e: TotalWidth

where e is an integer, real, char, boolean, or string-type expression.

TotalWidth is an expression that represents a positive integer amount. It is

an error for TotalWidth to be less than 1. (We will also see that a real

expression may be given an additional FractionalDigits parameter that allows

fixed-point notation.)
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Default field widths are implementation-defined for integer, real, and

boolean-type values, and are prescribed for char and string-type values.

The default field width is applied unless a colon and TotalWidth value fol-

low the output expression.

Char-type expressions, by default, are printed in a field of one space,

which means that no blanks appear on either side. If the char expression is

followed by a colon, and a value for TotalWidth, the character is preceded

by TotalWidth — I spaces when it is printed. Assume that c7: =V,
c2:='b', and ci: = 'c'. A blank space is shown for examples in this section

as'_'. 8

writeln (ci:l, c2:2, c3:3, 'A':4, 'B':5, X':6)MM
a b c A B C

Integer expressions are a bit more complicated. The default field

width of an integer is implementation-defined (but is often the number of

digits in maxint, plus one for a sign). All the digits of an integer-valued

expression (preceded by a minus sign if it is negative) are printed, even if a

TotalWidth argument is smaller than necessary. If TotalWidth exceeds the

number of digits in the expression (plus one if it's negative), the extra

spaces precede the expression when it's printed. 9 Assume that el, below,

equals 22:

writeln (el A, -ell, el :5, el:9, 5:1, 66:1, 777:1)MM
22-22 22 22566777

Boolean-valued expressions can also be output (although the boolean

constants false and true can't be read in). The boolean expression is

evaluated, and the character-string 'false' or 'true', as appropriate, is

printed. The case (upper or lower) of each letter is implementation-

defined, as is the default field width. The minimum number of characters

is not printed if a TotalWidth value is too small— the rules pertaining to

character-strings (below) are followed in such cases. As usual, extra spaces

go to the left. Assume that bl equals true:

writeln (bl, 1=2, \ = \, falseA, trueAO)MM
truefalsetruef true

By the way, the write-parameter ' ':« represents a sequence of n blanks— it's a blank that's

right-aligned in a field of n blanks.

By the way, if an expression equals zero, it has one digit.
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character strings 6 Character-strings and all other string-types (as well as values of type

boolean) follow a special rule that lets them be truncated during output.

The default field width for an /^-character string is, naturally, n spaces. If a

TotalWidth field specification is greater than n, then TotalWidth— n blanks

are printed before the string. If, however, TotalWidth is less than n, only

the first TotalWidth characters of the string are printed. As a result, charac-

ters may be missing from the right end of a string.

writeln ('Short, ':2, 'although':5, 'getting':7, 'longer':10, ' ':5, true:3)

Shalthogetting longer tru

Output of real-type values is most complicated, because the value's

format (fixed- or floating-point) can be specified. If e is a raz/-valued

expression, then it may take two forms as a write-parameter:

e : TotalWidth e : TotalWidth : FractionalDigits

The left-hand format is used for floating-point real output; the right-hand

option provides fixed-point output.

In floating-point representation, a real value e is written with a single

non-zero digit to the left of the decimal point. 10
It takes this form:

1) A minus sign ( — ) if e is less than 0, otherwise a blank space.

2) The first non-zero digit of e.

3) A period (.).

4) Enough digits of e to fill out the TotalWidth field, leaving room for 5,

6, and 7, below.

5) Either 'e' or 'E\ the implementation-defined exponent character.

6) The sign of the exponent (either '+' or '
—

').

7) The exponent itself. The number of digits in the exponent is

implementation-defined. If the exponent has fewer than this number
of digits, it is preceded by one or more zeros.

Requirement 4 is slightly confusing. The default field width (i.e., the

default value of TotalWidth) is usually chosen so that all significant digits of

e are printed. However, a TotalWidth of any size may be specified. As a

result, a large TotalWidth may result in spurious least-significant digits.

Unlike other types of output, additional blanks do not precede the floating-

point representation of e.

Fixed-point notation lets the programmer specify the number of digits

that are to follow the decimal point. A write-parameter of the form:

e: TotalWidth: FractionalDigits

In effect, the decimal always 'floats' to that position. Since a floating-point real is expressed

as a power of ten, its exponent's value can change to make up for any change in magnitude.
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is printed as:

1) TotalWidth — MinimumCharacters (defined below) blank spaces, if

TotalWidth >= MinimumCharacters.

2) A minus sign ( — ) if e is less than 0.

3) The integer, or 'whole,' portion of e

4) A period (.).

5) FractionalDigits of the fractional portion of e.

where MinimumCharacters is FractionalDigits, plus the number of digits in

e's integer portion, plus 1 (for the decimal place). If e is less than zero,

increase MinimumCharacters by 1 (for the minus sign.). At least Minimum-

Characters are always printed.
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6

Blocks, Scope, and Activations

The rules that relate to blocks, their activation, and the scope of the

identifiers they contain, form one of the most impenetrable sections of the

Standard. Primarily of interest to implementors, these rules attempt to pin

down some aspects of Pascal that were ignored or assumed in [J&W].

The rules of scope and activations are probably difficult because they

deal with broad program semantics, rather than with the syntax of individu-

al structures or statements. Such rules are so basic to any programming

language that their implications may not be obvious at first.

Unfortunately for programmers looking for clarification, many of the

issues these rules address involve pathological program examples unlikely to

be written by anybody but the most deranged syntax lawyers. 1 However
(speaking as a Scholar), such programs need to be well-defined regardless

of how unlikely they are to appear. It's best to plan ahead; as Lecarme and

Desjardins point out:

'.
. . you cannot prevent the user from writing silly programs, unless you

prevent him from writing any program at all.' [Lecarme75l

6-1 Blocks

Pascal is a block-structured language. A Pascal program can be seen as a

collection of segments, called blocks, in which definitions and declarations

are made, and program actions specified. The BNF involved is:

program — program-heading ' ;' program-block ' .'
.

program-block = block

.

block = label-declaration-part

constant-definition-part

type-definition-part

variable-declaration-part

procedure-and-junction-declaration-part

statement-part .

This term was added to the English language during the intense discussion of the ALGOL
60 standard. The debaters were first called (in a not unfriendly tone) ALGOL syntax lawyers,

but eventually came to be known as ALGOL theologians.
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program

/ r^^S 1J » ( W identifier—*—) ^*-

;

-«

program—+* identifier ^ ( W identifier—*—*) W ; .

— label-declara tion-part

-*• constant-definition-part-

type-definition-part

-*- variable-declaration-part-

j

cz

-^

procedure-and-function-declara tion-part

(
;
"

)
begin ^-^ statement ^

D

end-

A program's first block is called the program- block, while procedures and

functions consist (aside from their headings) of procedure- blocks and

junction- blocks, respectively. Since every block includes its own procedure

and function declaration part, blocks can be nested— any block can contain

other blocks. The maximum depth of such nesting is not specified by the

Standard, but is often limited by a processor.

The BNF of a block's parts shows that (aside from the statement-part)

they are all optional— each part's syntax is given between square brackets.

Each part is analyzed in detail elsewhere.

label-declaration-part = [ 'label' label {
',' label} ';'

] .

constant-definition-part = [ 'const' constant-definition';' { constant-definition'';' } ] .

type-definition-part = [
' type' type-definition ' ;'

{ type-definition ' ;'
} ] .

variable-declaration-part = [ 'var' variable-declaration'';' { variable-declaration'';' } ] .

procedure-and-function-declaration-part = { ( procedure-declaration
\
function-declaration ) ' ;'

}

statement-part = compound-statement

.

There is a special requirement that every label prefix a single statement in labels 6, 13-15

the statement-part of the block it is defined in. This is discussed along with

the goto statement in section 2-3.

6-2 Scope

For our purposes, blocks are important because they include the defining-

points of labels, and constant, type, variable, procedure, and function

identifiers. A block (and any blocks it contains) constitutes the region in

which a label or identifier can retain its original meaning. This means that

an identifier or label defined in the program-block (the block of the main

program) will be recognized in any procedure or function declared within
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6 Blocks, Scope, and Activations

the program-block, as well as within any subprograms declared within those

subprograms. Figure 1 shows the regions associated with defining points in

several nested blocks. Notice that a region can contain other regions.

program A
procedure B

procedure D
begin {D}

end; {D}

begin {B}

end; {B}

procedure C
procedure E

begin {E}

end; (E)

procedure F
begin {F}

end; {F}

begin [C]

end; {C}

begin (A)

end. {A}

Identifiers and labels defined in:

program A

procedure B
procedure C
procedure D
procedure E
procedure F

program A

procedure B

procedure

D

procedure C

procedure
E

procedure,.

Figure 1

Their region is blocks:

A, B, C, D, E, F
B, D
C, E, F
D
E
F

Although a region is the largest possible area of a program in which a

given identifier or label can keep its original connotation, the identifier's or

label's scope, or true range of meaning, can be limited by an intentional or

inadvertent redefinition. Figure 2 shows the effect of redefining the

identifier X in several nested regions. Even though the region of each

definition corresponds to figure 1, the scope of any X (i.e., to which con-

stant, type, variable, etc., does X refer?) limits its effective meaning.
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program X

Figure 2

Shading shows the scope of an identifier X when it is

redefined in a nested region.

Thus, an identifier's scope may be smaller than its region, but it is

never larger. Identifiers or labels defined in the program-block are called

global, while identifiers or labels created in nested blocks are said to be

local to their defining blocks. However, identifiers and labels are often

referred to as being relatively local or global.

A locally defined or declared type, value (like a constant or

enumerated value), variable (like a variable, value-parameter, or variable-

parameter), or subroutine (a function or procedure) is said to take

precedence to an identifier used by a type, value, variable, or subroutine

that has a relatively global defining point. Relatively global meanings of the

name are ignored— the most local application takes precedence. This makes
subprograms modular, in the sense that the programmer usually need not

worry about reusing relatively global identifiers. Be aware, though, that

reusing an identifier can make it impossible to refer to a relatively global

type, value, variable, or subroutine. 2

An interesting example of this can be found in the discussion of enumerated types in section

10-1.
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records 102-112

about pointers 136-142

6 Blocks, Scope, and Activations

Under most circumstances regions can be characterized as blocks (as

in Figures 1 and 2). However, there are situations (discussed elsewhere) in

which a region can be smaller. 3 Although every identifier or label may be

redefined, the new defining point must occur in a different region. In other

words, an identifier may be redefined within an enclosed block, or a 'paral-

lel' block, but it can't be defined twice in a single block (unless the

redefinition occurs in a record definition).

As you might expect, an identifier can't be used before it is defined.

(The sole exception to this rule allows the mutually recursive definitions of

pointers and their domain types, as described in section 12.) As a result,

the scope of an identifier is also restricted by the exact location of its

defining point. This program segment is illegal even though Sixes has the

same region (the program-block) as Boxcars:

{illegal example}

program Dicey (ouput);

const Sixes = Boxcars;

Boxcars = 12;

etc.

An identifier is recognized within an enclosed region, though. The

segment below is correct, since Sixes is defined in an 'outer' region (the

program-block) before it appears within procedure Enclosed:

{legal example}

program Dicey (ouput);

const Sixes = 12;

procedure Enclosed;

const Boxcars = Sixes;

etc.

The act of defining an identifier removes its entire region from the

scope of a like-named, but relatively global, identifier. As a result, one

cannot define an identifier, then use and redefine it in an enclosed block.

The rewritten segment below is illegal:

{illegal example}

program Dicey (ouput);

const Sixes = 12;

procedure Enclosed;

const Boxcars = Sixes;

Sixes = 6;

etc.

Record type definitions set up enclosed regions, and with statements create regions for their

durations. See section 11-1.
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Required identifiers that denote required constants, types, procedures,

or functions (like maxint, integer, new, or sqrt) are treated as though they're

defined in a region that encloses the entire program. This means that they

have their predefined meanings throughout the whole program, but can be

redefined if necessary.

The required textfiles input and output, in contrast, are treated as

though they were defined within the program— their appearance as program

parameters serves as a defining point. In consequence, they may not be

redefined in the program block if they are given as program parameters. 4

This program segment is illegal because it attempts to define an

identifier twice in the current region— a program-block, procedure-block, or

function-block:

{illegal example}

var A : integer;

procedure A;

etc.

In contrast, the redefinition below is quite all right:

{legal example}

program A (output).,

input, output 131-132

procedure A
;

var A : integer;

etc.

The program-identifier A (the program's name) has no meaning

within the program, since its region effectively contains that of the

program-block (which means that it can be redefined there). In turn, the

defining-point of variable A is in a region contained by the region pro-

cedure A is defined in. The 'inner' region is simply removed from the

scope of procedure A. A could not call itself recursively, nor could it be

defined as a function.

recursive calls 75, 78

6-3 Activations

The possible effects of region and scope on identifiers or labels is academic

until the blocks they're defined in are activated. The program-block is

activated when the program is run, while procedure-blocks and function-

blocks are activated when their associated procedures or functions are

called.

Of course, redefining input, output, or any of the required identifiers is usually not a bright

idea. Note that redefining the identifiers input and output does not change the effect of pro-

cedures or functions that default to the required textfiles input and output— these files exist in-

dependently of their identifiers.
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When a block is activated, its local variables are allocated, and are

totally undefined 67 totally undefined. 5 If the block is a function-block, the result of that func-

tion is also totally undefined. As noted before, the region the block defines

(and any regions it contains) is removed from the scope of any relatively

global identifiers that are locally redefined.

A block's activation lasts while the actions given in its statement-part

(the block's algorithm) are being executed. After the last statement is exe-

goto 13-15 cuted, the activation is terminated. Only a goto statement can cause an

early termination, by indicating that execution is to continue in a block that

encloses the current block. 6 Note that a goto cannot cause a new activa-

tion; it can only end the current activation, or end activations that contain

(led to) the current activation.

Once a block has been activated, the procedures or functions declared

within it can be called. When a subprogram is called (at its activation-

point) further processing of statements is temporarily suspended while the

subprogram is activated, and executed. However, the calling block's vari-

ables remain allocated, and other procedures and functions whose scope

includes the calling (and called) block can be invoked themselves.

When a block's activation is terminated, the variables it contains can

be assumed to be deallocated. Pascal has no form of 'own' variables— local

variables that are not deallocated at the block's termination (and thus,

would not need to be reinitialized when that block is activated again).
7

(Relatively) global variables must be employed if (relatively) permanent

allocation is desired. This is unfortunate, because it tends to make Pascal

programs less modular than they might be.

Program parameters— external files— are not necessarily totally undefined. See section 11-4.

This will turn out to be the block in which the label was defined. See section 2-3.

Although FORTRAN, C, and quite a number of other languages do.
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Constant Definitions

Programmer-defined constants provide alternative names— identifiers— for

values. It's important to remember that the word 'constant' has several ap-

plications in the context of Pascal. This section discusses constants that are

defined by the programmer for the explicit purpose of acting as synonyms

for other values. However, we sometimes also refer to the constants of enumerated types 97-99

enumerated types, string-type constants, and the constants of the required strings 117-119

simple types (see the discussion of tokens in section 1-2).

Programmer-defined constants are often used to document the usage

of implementation-defined values, and to help increase program portability.

They're also valuable for setting, and implicitly documenting, program-

specific limits. For example:

const LineLength = 80;

PageLength = 66;

type Page = array [1.. LineLength, 1.. PageLength] of char;

7-1 Constant Definition Part

A constant definition supplies an identifier as a synonym for a value. Zero

or more constants can be defined in the constant- definition-part:

constant-definition-part = [ 'const' constant-definition ' ;'
{ constant-definition

1
;'

} ]

constant-definition = identifier'^ constant.

constant = [ sign] ( unsigned-number \ constant-identifier)
I
character-string .

constant-identifier = identifier

.

The chart equivalent is:

constant-definition-part

r*~+ ~\ ^unsigned-number—

v

., .£ f^~ "^constant-identifier—

/

"^ . »;
const ^identifier —*- = <

^ '—» any-character-except- -—»-'—
\

V ^ _ )

Although the BNF can't specify this restriction, if a sign is used any

constant-identifier that follows it must denote a real or integer value. For

example:
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7 Constant Definitions

const LowNumber = —maxint;

pi =3.1415926;

MinusPi — —pi;

InitialLetter = 'a';

FinalLetter = V;
TrueLove = 'Patti';

maxint 32 Only one constant— maxint— is required to be predefined in Pascal.

1) Even though the appearance of an identifier in a constant definition

serves as its defining point for a block's region, the constant can't

appear as the 'value' of its own definition.

2) A variable or other expression may not provide the value of the con-

stant.

These definitions are illegal:

{illegal definitions}

const A = —A; {Definition is self-referencing.}

LowerLimit = Bound; {Illegal if Bound is a variable.}

Deuce = 1 + 1; {Expressions aren't allowed.}

A character-string was defined as a token way back in section 1-2.

character-string = *"' string-element { string-element)
'"'

.

string-element = apostrophe-image
I
string-character .

String types are the only structured constants. Allowing other structured

constants has often been proposed as an extension to Pascal, but is not

included in the Standard.
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8

Variables

Variables are easily characterized as locations in the computer's memory
that store and represent values. There is no default initialization (assign-

ment of starting values) to Pascal variables. When a variable is first allocat-

ed it is undefined. If it's a structured variable, it is said to be totally structured types 101

undefined, which means that all its components are undefined.

Three ideas characterize variables in Pascal.

1) Every variable has one particular type, and can only store values of

that type.
l

Unlike FORTRAN and PL/I, Pascal has no default typing of variables. A
type must be explicitly associated with any variable when it is declared, and

this type cannot be changed. 2

2) Each variable must be declared in a variable declaration part or formal

parameter list before it is used.

This stands in contrast to languages that allow variable declarations in the

'block' of a compound statement (like ALGOL), or even let variables be

declared implicitly by being used (like BASIC or APL).

3) The lifetime of a variable (except for a dynamically allocated variable)

is restricted by its declaration point.

Because Pascal has a block structure, no declared variable is allocated

until the block it's declared in is activated, or entered. Local variables,

declared within procedures and functions, are only allocated during the

activation of their subprograms. As a result, a subprogram's variables must

be reinitialized on every call of the subprogram. In contrast, global vari-

ables exist for the entire run of the program.

formal parameters 79

dynamic allocation

137-138

activations 63-64

8-1 The Variable Declaration Part

Variables can be declared in the block of any program, procedure, or func- blocks 58-59

tion. The variable declaration part comes immediately after the type

definition part, and right before the subprogram declarations. Since the type definitions 95-96

BNF below is enclosed within square brackets, it is optional— a block

doesn't have to include variable declarations.

Precise restrictions are detailed in the discussion of assignment compatibility in section 2-1.

Record variants, however, do their best to get around this rule. See section 11-1.
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8 Variables

variable-declaration-part = [ 'var' variable-declaration
'

';' { variable-declaration
1'

;'
} ] .

variable-declaration = identifier-list ' :' type-denoter .

identifier-list = identifier {
' ,' identifier } .

type-denoter = type- identifier \ new-type .

type-identifier = identifier .

The word-symbol var opens the variable declaration part, and may be

followed by one or more variable declarations. The names that appear in

regions 59-63 the identifier-list are variable identifiers whose region is the block the

declaration appears in. If a like identifier has been defined in a relatively

global region, the current region is removed from the relatively global

identifier's scope— the identifier loses its relatively global meaning. We can

simplify the BNF with a chart:

variable-declaration-part

var •identifier J. ctype-identifier

new-type I> 7

The type-denoter specifies the type of value— simple, structured, or

pointer— the variable will represent. If the type-denoter is an identifier, we
can safely assume that it is a required type identifier (real, integer, boolean,

text 131 real, or text), or was defined in a prior type definition part. For instance:

type Color = {rest of Color definition}

Matrix = {rest of Matrix definition}

Shortlnteger = {rest of Shortlnteger definition}

var Channel: integer,

BattingAverage, Temperature, ConversionFactor: real;

Data, Results: text,

Station: integer,

Shade: Color,

Maze, Labyrinth: Matrix;

Limited: Shortlnteger;

A type-denoter may also be a new-type, whose BNF is:

new-type = new-ordinal-type
I
new-structured-type

I
new-pointer-type .

This BNF is pursued further when type definitions are discussed in section

10. A new-type establishes the type of a variable through a description of

its structure or subrange, rather than with an explicitly defined and named

type definitions 95-96 type. Such a description would be equally at home in a type definition. For

example:
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var LowerCase: set of a'..'z';

Position: record

Latitude, Longitude: real

end;

Board: array [1..8, 1..8] of boolean;

YearsToGettysburg: 0..86;

Using a new-type as a type-denoter lets the intermediate step of

defining a type be skipped— the variable is given an anonymous, or

unnamed, type. However, since Pascal does not adhere to a strict structural

equivalence of types, the shortcut can cause problems. For example, these

two variables are not assignment compatible. They belong to entirely

different types, and assignments cannot be made between them:

var a: record

real

b:

x,y,z\

end;

record

x,y,z:

end;

real

A second reason for explicitly defining types (and then using type

identifiers in variable declarations) is that the types of functions, value-

parameters, and variable-parameters must all be given with type identifiers,

and cannot be described with new-types. Variable a or b, above, could not

be passed, say, as a variable-parameter, since an actual variable-parameter

must always be of the same type as its corresponding formal parameters. 3

If a and b were both defined at the same point the definition would

probably be:

var a,b: record

x,y,z: real

end;

This gives them the same (anonymous) type, and makes them assignment

compatible. However, if a and b were declared in different blocks, they

would have to be declared with type-identifiers, rather than as new-types, to

be assignment compatible.

8-2 Kinds and Categories of Variables

Ordinary variable declarations allocate variables, and associate identifieis

with them. However, we must clearly distinguish between variables and

identifiers. Although an identifier may refer to a variable— to a storage

location— it is not synonymous with the variable itself. A variable may
have more than one name, or it may not be named at all.

Nor could they be passed as value-parameters— the actual and formal parameters still have

to be assignment compatible.

assignment compatibility

10-11

about parameters 79-87
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8 Variables

A somewhat more confusing fact is that storage locations may be sub-

divided. As a result, a variable may contain variables itself. Such variables

are said to be structured.* In contrast, a variable that doesn't contain vari-

ables is a simple variable. The declaration of structured variables can often

be seen as a convenient way of allocating simple variables without going

through the drudgery of naming each one.

Variables can be allocated or renamed in other places besides a vari-

able declaration.

value-parameters 80-81 1

)

variable-parameters 81-83 2)

3)

Value-parameters allocate and name local variables.

Variable-parameters rename relatively global variables.

The dynamic allocation procedure new allocates anonymous variables

at run-time.

(Although function declarations allocate and name storage locations, these

are not, strictly speaking, variables.)

A declared variable, value-parameter, or variable-parameter has an

identifier that names it. This identifier is known as an entire- variable

because it refers to an entire variable— not just to a single component (or

subvariable). The components of a structured variable don't have

identifiers, though, and must generally be accessed using names 'manufac-

tured' with the entire-variable's identifier. A variable's name is called a

variable- access, of which an entire-variable is just a special case.

variable-access = entire-variable
I
component-variable

I
identified-variable] buffer-variable

.

entire-variable = variable-identifier

.

variable-identifier = identifier .

for statement 26-29 The only context that entire-variables appear in involves the for statement,

whose control variable must be an entire-variable.

Although all the structured variables are usually said to have com-

ponents, a component- variable is a name that denotes one component of an

array or record:

about arrays 112-119

component-variable = indexed-variable\ field-designator .

An indexed- variable denotes one component of an array variable.

Notice in the BNF that an array-type variable is itself a variable-access.

This indirectly confirms that the components of structured variables may be

structured too.

indexed-variable = array-variable '[' index-expression {
',' index-expression} ']'

.

array-variable = variable-access .

index-expression = expression .

Although set-type variables are usually lumped with the structured variables, and have a dis-

cernible internal structure, they do not contain component variables.

70



Kinds and Categories of Variables 8-2

A field- designator denotes a single component (a field) of a record

variable. Under most circumstances, the field is denoted by the record's

name, a period, and the field's identifier. However, within the purview of a

with statement the field-identifier alone names the component.

field-designator = record-variable '.' field-spec\fier\ field-designator-identifier

.

record-variable = variable-access .

field-specifier — field-identifier .

field-identifier = identifier

.

A buffer- variable denotes one component of a file-type variable.

buffer-variable = file-variable''f .

file-variable = variable-access .

The definition of a file-variable as a variable-access is not wholly accurate,

because files may not have file-type components. Since a file's components
are anonymous (they all share the same name— the buffer variable), only

one component of a given file can be referred to at any time. Finally, files

are peculiar variables because a file can be in different 'states' that affect

the accessability of its buffer variable.

The final category of variable-accesses are identified- variables.

identfied-variable = pointer-variable 'f .

pointer-variable = variable-access .

Identified-variables name dynamically allocated variables. Such variables are

not declared at all. Instead, a call, at run-time, of the required procedure

new allocates an anonymous variable that is referenced by the pointer-type

variable that serves as new's argument. The variable remains allocated

until it is disposed of with a call to the required procedure dispose.

about records 102-112

with statements 105-107

about files 125-135

about new 137, 141

about pointers 136-142
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Subprograms and Parameters

Procedures and functions are named subprograms that carry out part of a

program's algorithm. Although subprograms have been implemented in

nearly every high-level language, Pascal programs tend to rely on them to

an exceptional extent.

Subprograms benefit most aspects of Pascal usage and implementa-

tion. At the machine level, subprograms help minimize processor-time,

and reduce the amount of memory a program requires. The object

(machine language) code of a procedure or function need only be stored a

single time, even if the algorithm it represents is invoked more than once.

Any memory that is required for locally declared variables must be allo-

activations 63-64 cated only when the subprogram is activated, and can be freed when the

activation is complete.

Subprograms make programs easier to write. A solution step that's

required at more than one stage of an algorithm can be written as a pro-

cedure, then invoked with a procedure call as necessary. A computation

that must be repeated (with different arguments) can be written as a func-

tion, because a function call is an expression that represents the value the

function computes.

Subprograms make their most significant contribution in the areas of

problem solving and programming methodology. They go a long way

toward fulfilling Wirth's promise that Pascal would be:

'.
. . a language suitable to teach programming as a systematic discipline— ' 1

In the last few years it has become generally accepted that program-

ming instruction should promote the use of computers for problem solving

in general, and not be limited to teaching the syntax of a particular com-

puter language, or methods for coding specific algorithms. A problem solv-

ing technique called stepwise refinement is a particularly successful

approach. A problem is broken down into its subproblems by being repeat-

edly restated in a pseudocode that (in Pascal classes, at least) becomes pro-

gressively more Pascal-like. This step-by-step refinement results in partial

algorithms that are easy to encode.

A special advantage of stepwise refinement is that the partial algo-

rithms it produces are often precise specifications for subprograms. Pseu-

docode descriptions of algorithmic steps that appear during stepwise

refinement usually wind up being implemented as individual procedures or

functions.

1 [J&W] page 133.
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9-1 Procedures

Procedures are declared in the (optional) procedure and function declaration

part of any block.

procedure-and-function-declaration-part = { ( procedure-declaration
I
Junction-declaration )';'}•

Procedures and functions are the last items declared in a block, which

makes sense because procedures and functions frequently require the con-

stants, types, and variables defined earlier. The BNF of a procedure-

declaration looks complicated:

procedure-declaration = procedure-heading ' ;' directive

I
procedure-identification ' ;' procedure-block

I
procedure-heading ' ;' procedure-block .

But under most circumstances a procedure declaration consists of a pro-

cedure heading and its block: 2

procedure-heading = 'procedure' identifier [ formal-parameter-list] .

procedure-block = block .

The region of the procedure's identifier is the block the procedure is regions 59-63

defined in, along with any blocks the procedure encloses. Since this

includes the block of the procedure itself, recursive procedure calls are recursion 75, 78

allowed— a procedure can call itself. Syntactically, the block of a procedure

is identical to that of a program:

block = label-declaration-part

constant-definition-part

type-definition-part

variable-declaration-part

procedure-and-function-declaration-part

statement-part .

A procedure block, like a program block, may contain label declara-

tions, and the definitions and declarations of local constants, types, vari-

ables, etc. The region of these identifiers is the block of the procedure, as

well as any block (s) the procedure contains. The region is removed from

the scope of any like-named, relatively global identifier.

Besides naming the procedure, the heading lists its formal parameters.

There are four varieties:

1) Value-parameters are similar to variables declared within a procedure,

but differ because value-parameters are initialized during the pro-

cedure call. An access or modification of a value-parameter has no

effect on the actual parameter expression that provided the initializing

value.

scope 59-63

about parameters 79-87

value-parameters 80-81

The remainder of the BNF is required when directives (in particular, the required directive

forward) are used. Directives, which relate to both procedures and functions, are discussed in

section 9-4.
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9 Subprograms and Parameters

variable-parameters 81-83 2)

procedural-parameters

83-87

functional-parameters 83-87

3,4)

Variable-parameters are local aliases, or synonyms, for variables

declared outside the procedure. An assignment to a variable-

parameter is equivalent to an assignment to its actual parameter

(which must be a variable).

A procedural-parameter is a local alias for a procedure declared outside

the current procedure. A functional-parameter is an alias for a func-

tion declared outside the current procedure.

9-1 .1 Procedure Calls

procedure statements 12-13 A procedure is invoked by being called in a procedure statement:

procedure-statement = procedure-identifier ( [ actual-parameter-list ]

I read-parameter-list

I
readln-parameter-list

I
write-parameter-list

I
writeln-parameter-list) .

The BNF of a procedure's parameter list defines parameter lists for

calls of the required procedures read, readln, write, and writeln (which don't

interest us now), as well as for the actual-parameter- list of arguments that

can accompany an ordinary procedure call.

actual-parameter-list = ' actual-parameter {
',' actual-parameter} ')'

.

actual-parameter = expressionl variable-access

procedure-identifier
I function-identifier

.

The binding, or correspondence, of actual and formal parameters is

established by position. If the first two formal parameters in a procedure

heading are, say, a variable-parameter and a value-parameter, then the first

two actual parameters of a procedure call must be a variable-access and an

expression, in that order. There must always be exactly one actual parame-

ter for each formal parameter.

The exact order of evaluation, accessing, and binding of actual param-

eters is implementation-dependent. Since the expression that is the argu-

ment of a value-parameter is evaluated at the time of the procedure call, it

is an error for it to be an undefined variable. However, since the variable-

access that is the argument of a variable-parameter isn't evaluated, it may

be totally undefined without error.

A brief example program demonstrates the use of value-parameters

and variable-parameters. Additional examples accompany the discussion of

parameters in section 9-3.
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program Example (output);

{Demonstrates local and global scope.}

var /', j, k: integer,

procedure Demonstrate (/: integer, vary: integer);

var k: integer; [i and k are local variables, distinct from globals.

begin

k:= 1;

writeln ( i, j, k)

;

i:= 2*i; j:= 2*j;

writeln ( i, j, k)

it:- 7;

end;

begin

/:= 3; j:=
writeln ( /, y, k)

Demonstrate (/,

writeln ( /, y, A:)

5;

end.

3 5 7

3 5 1

6 10 1

3 10 7

Notice that the local variables / and k, declared within Demonstrate,

are distinct from the variables / and k declared in the program block. The
rules by which the region of a procedure is removed from the scope of a

program or subprogram that contains it were discussed in section 6-2.

A recursive subprogram calls itself. For example, program Reverse

uses the recursive procedure Stack to echo, in reverse order, the characters

on one line of input:

program Reverse (input, output);

{Demonstrates a sequence of recursive procedure calls.}

procedure Stack;

var Character: char;

begin

read (Character);

if not eoln then Stack;

write (Character)

end;

begin

Stack;

writeln

end.

T l.
This is not a palindrome,

.emordnilap a ton si sihT
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9-2 Functions

A function is a subprogram that is invoked during the evaluation of an

expression. A function returns, or represents, a value of any simple or

factor 41-42 pointer-type. 3 Technically, a function-designator is a factor, one of a class

of expressions that also includes variable-accesses and unsigned constants.

It's not too inaccurate to think of a function as an expression that computes

its own value.

Function- declarations mingle with procedure declarations in the pro-

cedure and function declaration part of any block. The BNF is complicated

directives 86-87 by the possibility of directives:

Junction-declaration = function-heading ' ;' directive

I function-identification ' ;' function-block

I
function-heading ' ;' function-block .

But when a directive is not used, the function's declaration consists of

its heading and block. The heading is like that of a procedure, except that

the function's result type must be specified. In the BNF below, notice that

a function's result type must be given with a type-identifier, and may not

new-types 95-96 be a new-type. This means that the type of a function cannot be defined on

the spot. Instead, it must have been defined (in a type definition) prior to

the function's declaration.

function-heading — 'function' identifier [ formal-parameter-list] ':' result-type,

result-type — simple-type-ident{fier\ pointer-type-identifier

.

function-block = block .

The BNF of a block was given in 6-1. Formal-parameter-lists are discussed

in 9-3. Some example function headings are:

function Greatest (First, Second, Third: real): real;

function IsPrime (Arg: integer): boolean;

function LastElement (CurrentPosition: PointerType): PointerType;

Although a function may have parameters of any sort, the intended

purpose of a function is to represent a single value of a simple or pointer

type— not to modify its arguments. Thus, variable-parameters rarely appear

in a function's formal-parameter-list.
4

However, a pointer-valued function can't be used to access a dynamically allocated variable.

An honest-to-goodness pointer variable is required to construct an identified-variable. See sec-

tion 12.

We'll see a common exception-function that computes and represents a pseudo-random number.

The seed is usually passed as the argument of a variable-parameter, and modified within the function.
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A function is invoked by the appearance of a function- designator
,

which calls the function, and represents its value as an expression. The

function-designator's region is the block it is defined in, as well as any

blocks contained by the function itself. Thus, a function can call itself;

recursive function calls are legal.

function-designator = function-identifier [ actual-parameter-list] .

Junction-identifier = identifier .

Within the block of the function, the function-identifier alone (without a

parameter list) serves a different purpose. It represents a storage location,

whose type is the function's result-type, that may only be assigned to.
5 The

value assigned must be assignment-compatible with the result-type of the

function. This application was anticipated in the BNF of an assignment

statement:

assignment-statement = ( variable-access\ function-identifier) ': = ' expression

Every function must contain at least one assignment to its identifier.

But since this assignment won't necessarily be executed, the Standard

makes it an error for a function to be undefined on the completion of its

activation.

Some example function declarations are:

function Tan {Angle: real): real;

{Returns the tangent of its argument.}

begin

Tan : = sin( Angle)/ cos( Angle)

end;

function Even (Number: integer): boolean;

{Returns true if its argument is an even number.)

begin

Even := (Number mod 2) =
{We could have just said Even := not odd(Number) .)

end;

A function's block, like that of a procedure, may contain local

definitions and declarations of labels, constants, types, etc. Their region is

the block of the function, and of any subprograms defined within the func-

tion. This region is removed from the scope of any relatively global

identifiers with the same names.

Although it is rare, functions may have formal variable-parameters.

Function Random, below, demonstrates one application.

Of course, a function that has no formal parameters may confuse novice program readers,

since its function-designator will be indistinguishable from its function-identifier. Some
languages (like C) avoid this problem by requiring that the function-designator have an empty

parameter list (e.g., foo())\ Pascal does not.
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function Random (var Seed: integer): real.,

{Returns a pseudo-random number such that 0<= Random(Seed) <1.}

const Modulus = 65536;

Multiplier = 25173;

Increment = 13849;

begin

Seed:— ({Multiplier* Seed) + Increment) mod Modulus;

Random := Seed/ Modulus

end;

The fact that functions (which can serve as actual parameters) can

side-effects 79 have variable-parameters (as well as out-and-out side-effects) is one reason

that the phrase:

'The order of evaluation, accessing, and binding of the actual-parameters shall

be implementation-dependent.'

appears several times in the Standard. Suppose that this procedure call

occurs in a program:

Inspect (Random (Seed), Seed)

A cursory reading of function Random, above, confirms that it modifies the

value of Seed. But in the call of procedure Inspect, is the variable Seed

evaluated before or after the call of Random'! Is the modified or

unchanged value of Seed passed?

The answer is implementation-defined. Inasmuch as natural (i.e.,

human) languages are read from right to left, left to right, and even top to

bottom, it is difficult to argue convincingly that evaluating actual parameters

from left to right is necessarily the right thing. It is up to the programmer

to devise an alternative formulation that sidesteps implementation depen-

dencies, e.g.:

Temporary : = Random (Seed)
;

Inspect (Temporary, Seed)

As stated earlier, recursive function calls are permitted in Pascal:

function GreatestCommonDenominator (ij: integer): integer;

(Returns the greatest common denominator of /' and j.}

begin

if i<j

then GreatestCommonDenominator :
=

GreatestCommonDenominator (j, i)

else if 7=0
then GreatestCommonDenominator : = i

else GreatestCommonDenominator :
=

GreatestCommonDenominator (j, i mod j)

end;
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9-3 Parameters

Procedure and function calls frequently require arguments whose number
and type don't change, but whose names or values vary from one call to

the next. Formal parameters provide a way to rename the variables,

expressions, procedures, or functions that serve as subprogram arguments.

Parameter declarations give local identifiers to arguments (and possibly allo-

cate new variables) for the duration of a procedure or function call.

The mechanism of parameters is virtually required when procedures

or functions are written independently of the programs they are used in,

and relatively global identifiers are unknown. Parameters also help increase

program reliability by promoting modularity. Assignments to relatively glo-

bal variables from within subprograms, called side- effects, tend to reduce

the reliability of code by making its effect harder to verify. A subprogram's

parameter list serves as an easily checked table of the connections between

a procedure or function and its environment.

9-3.1 Formal Parameter Lists

Procedure and function declarations begin with a heading that names the

subprogram (and its result type, if it's a function), and provides the

defining point for a list of the subprogram's formal parameters. 1

formal-parameter-list = '(' formal-parameter-section {
';' formal-parameter-section} ')'

formal-parameter-section > value-parameter-specification

I variable-parameter-specification

I
procedural-parameter-specification

I functional-parameter-specification .

value-parameter-specification = identifier-list ' :' type-identifier .

variable-parameter-specification = 'var' identifier-list
1"' type-identifier,

procedural-parameter-specification = procedure-heading .

functional-parameter-specification = Junction-heading

.

Formal parameters are identifiers that, within the subprogram, denote

(or are initialized by) the actual parameters, or arguments, that accompany
a subprogram call. Depending on the specification of its corresponding for-

mal parameter, an actual-parameter may be a variable, an expression (of

which a variable is just a special case), or a subprogram.

Conformant array parameters (which are confined to Level 1 Pascal) are discussed in section

9-5.

The alternative formulation of a formal-parameter-section (defined with a *>') is given in

section 9-5.
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9-3.2 Value-Parameters

A value-parameter is, in effect, a local variable whose initial value is sup-

plied by an actual parameter. Its BNF is:

value-parameter-specification = identifier-list ' :' type- identifier .

identifier- list = identifier {
' ,' identifier } .

Although all the value-parameters listed in a single value-parameter

specification are of the same type, not all the value-parameters of a given

type need be declared in the same value-parameter specification. The
parameter lists of procedures Together and Separate, below, declare the

same number and types of value-parameters. We will see, though, that

congruous lists 85 these parameter lists are not congruous. Together contains only one formal

parameter specification, while Separate has three.

procedure Together (x,y,z: integer);

procedure Separate (x: integer, v: integer, r. integer);

procedure Compare (First, Second: TheirType);

Unlike an ordinary variable, a value-parameter is not undefined when
it is allocated. Instead, the value-parameter's corresponding actual

parameter— its argument— is evaluated when the subprogram is called.

When the subprogram's block is first activated, this value is attributed

(assigned) to the value-parameter. Assignments to a value-parameter have

no effect on the actual parameter, even if the actual parameter happens to

denote a variable. For example:

program Test (output);

{Demonstrates value-parameters.}

var x, v: integer;

procedure NoEjfect (x, v: integer);

begin

x:= y; y:= 0;

writeln (x, y)

end;

begin

x:= 1; v:= 2;

writeln (x, y);

NoEffect (x, y);

writeln (x, y)

end.HIM
1 2

2

1 2
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In more formal terms, a value-parameter specification is the defining

point of a value-parameter whose region is its formal-parameter-list, as well

as the defining point of an associated variable-identifier whose region is the

subprogram's block. What does this mean in practice? Well, although a

subprogram and a formal parameter may have the same identifier:

procedure Legal {Legal: integer);

because the procedure and parameter are defined in different regions, a for-

mal parameter's identifier may not be redefined in the subprogram's block:

{illegal example}

procedure Foo {Bar: integer);

const Foo = 5; {A legal definition.}

Bar= 3; {An illegal definition— Bar is already defined in this block.}

* • . etc.

1) The actual-parameter that corresponds to a value-parameter can be

any expression that is assignment compatible with the value-parameter.

2) As a result, file-type variables (or structured variables with file-type

components) cannot be passed as value-parameters. They must be

passed as variable-parameters, discussed below.

3) The argument expression is evaluated at the time of the subprogram

call, although the exact order of evaluating, accessing, and binding of

a given call's arguments is implementation-dependent.

assignment compatibility

10-11

9-3.3 Variable-Parameters

A variable-parameter (sometimes called a 'var parameter' for short) is a

renaming of, or local alias for, its actual parameter. Its syntax is:

variable-parameter-specification ='var' identifier-list
1

"^ type-identifier,

identifier-list = identifier {
',' identifier) .

This syntax is almost identical to that of an ordinary variable declara-

tion, with two important exceptions.

1) The word-symbol var must be repeated with each additional type of

variable-parameter.

2) The type of the variable-parameters being declared must be given with

a type-identifier— the name of a previously defined type.

Thus, a new-type description cannot appear in a parameter list.

Not every variable-parameter of a given type need be declared in a

single variable-parameter specification. The headings shown below declare

the same number and type of variable-parameters.

procedure Close (var a,b,c: real);

procedure Far (var a: real; var b: real; var c: real);

variable declarations 67-69

new-types 95-96
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The actual parameter that corresponds to a variable-parameter must be

variable-access 70 a variable-access. It must denote a variable (or, implicitly, a component of

about packing a variable that is not packed). It can't merely represent a value, such as a

101, 119-121 constant or function call.

There are four restrictions on variables passed to variable-parameters.

same types 95-96 1) The actual parameter must possess the same type as its formal param-

eter.
8

record variants 107-112

2) The actual parameter may not denote a field that is the selector of a

record's variant part.

packed types 101 3) An actual parameter may not denote a component of a packed vari-

able (although a variable passed as a parameter may be packed).

buffer variables 127 4) If a file buffer variable f\ is passed as the argument of a variable-

parameter, it is an error to modify the value of the file /.
9

A variable-parameter (rather than a value-parameter) is usually

defined if the actual parameter is going to be modified within a subprogram.

However, situations arise that make it desirable to pass data to a variable-

parameter even if it is not going to be altered. When a large array is passed

by value, for instance, the value-parameter may require a considerable

amount of space, and the attribution of actual to formal parameter may be

time consuming. The problem is avoided by passing the relatively global

variable to a variable-parameter— a low-overhead operation. Although the

protection of a value-parameter is lost, the documentation and modularity

advantages of parameters in general are retained.

In formal terms, a variable-parameter specification is the defining

point of a variable-parameter whose region is its formal parameter list, as

well as the defining point of an 'associated' variable identifier whose region

is the subprogram's block.

However, no new variable is allocated. Instead, the formal variable-

parameter (or, if you prefer, its associated variable-identifier) denotes the

variable that is passed as an actual parameter. Any assignment to the

variable-parameter is equivalent to an assignment to the actual parameter.

Given this procedure:

procedure Double (var Parameter: integer);

begin

Parameter : = Parameter * 2

end;

the procedure call Double (x) is equivalent to the assignment x: = x*2.

In contrast to a value-parameter, which is only required to be assignment compatible with its

actual parameter.
9
This rule is intended to avoid the sticky situation that might result if, for instance, f\ is

passed as a variable-parameter to a procedure that resets / as a side-effect!
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The actual- parameter is accessed when the subprogram is called

(although the exact order in which actual-parameters are accessed is imple-

mentation dependent). In consequence, if the variable-access is an

indexed-variable, changing the index does not affect the component that indexed variables

has already been passed as a parameter. Changing the value of / within the 70
-
115-117

block of some procedure Modify will not cause the component passed in

this call of Modify to change:

Modify (Matrixii])

Although the variable-parameter is an alias for a relatively global vari-

able, the relatively global name is still validly defined (unless it is redefined

within the subprogram). Suppose we define this procedure:

procedure DoubleAndAddOne (var Parameter: integer);

begin

Parameter : = Parameter * 2;

x: = x + 1

end;

The call

DoubleAndAddOne (x)

is equivalent to this pair of statements:

x: = x * 2;

x: = x + 1

Although [J&W] implied that the actual parameters of variable-

parameters must denote distinct variables, the current Standard makes no

such restriction.

9-3.4 Procedural-Parameters and Functional-Parameters

Just as a variable may be renamed within subprograms through a variable-

parameter-specification, a procedure can be given a local alias with a

procedural-parameter- specification.

procedural-parameter-specification = procedure-heading .

procedure-heading = 'procedure' identifier [ formal-parameter-list] .

Functions (and their parameters) may also be declared as formal

parameters in a Junctional- parameter- specification.

functional-parameter-specification = function-heading .

function-heading = 'function' identifier [ formal-parameter- list] ':' resuit-type .

Functional-parameters are much like procedural-parameters, except for the

requirement that a functional-parameter's result type must appear as part of

its declaration. For the remainder of this section I'll just refer to
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9 Subprograms and Parameters

'procedural/functional'-parameters and specifications when I mean
'procedural-parameters or functional-parameters,' etc.

The identifiers that denote the formal parameters of the

procedural/functional parameters have no meaning or application. In the

example below, the value-parameter x (of function /) never appears again.

procedure Bisect (function fix: real): real;

LowBound, HighBound: real;

var Result: real);

{Finds a zero of fix). Assume f {LowBound) <0 and /{HighBound) >0.}

const Epsilon = le— 10;

var MidPoint: real;

begin

MidPoint : = LowBound;

while absi LowBound —HighBound) > Epsilon* abs{ LowBound)
do begin

MidPoint : = ( LowBound +HighBound) 12;

if f (MidPoint) <0
then LowBound := MidPoint

else HighBound := MidPoint

end;

Result := MidPoint

end;

When procedures or functions are passed as parameters, they are not

accompanied by their own actual parameters. For instance, in this call a

function named ProductionFunction is the actual parameter of /:

Bisect {ProductionFunction, —5, 5, Answer)

The fact that a procedural/ functional-parameter definition is accom-

panied by its own formal parameter list (which may include the declarations

of any other kinds of formal parameters) is a change in Pascal, since

[J&W] only allowed value-parameters. Thus, procedure Bisect, above

(which requires a variable-parameter), could itself be passed as a procedural

parameter. A more elementary example is:

procedure Demo (procedure Show (var x: integer));

var v: integer;

begin

Show(y);

end; {Demo}
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When a parameter list contains a parameter list (as the parameter list

of Show is contained by the parameter list of Demo), the 'internal' list

establishes a new region in relation to the rest of the parameter list. The

defining points found within this region have an extremely limited scope.

For example:

procedure Outer (var Outer: boolean;

procedure Inner (Outer, Inner, Change: real);

Change: integer);

The parameter list of procedure Outer is in one region (which lets

Outer appear legally as a variable-parameter of type boolean). The boolean

identifier Outer, procedure identifier Inner, and integer identifier Change

must all be different, since they share the same defining region. However,

Change, Inner, and Outer can all show up again within the parameter list of

procedure Inner— it is a new and separate region. They are just 'dummy'

identifiers; all (relatively) global meanings of Change, Inner, and Outer are

preserved.

A more formal explanation might not hurt. A procedural/functional-

parameter-specification is the defining point of a procedural/functional-

parameter whose region is its formal-parameter-list, as well as the defining

point of a procedure identifier or function-designator for the block it is a junction designators 77

parameter of. However, the identifiers 'declared' in the formal parameter

list of a procedural/functional-parameter-specification are not associated

with any block. Their region (and with it, their scope) is limited to the for-

mal parameter list they appear in.

The actual parameter that corresponds to a formal

procedural/functional-parameter must obey certain rules. First of all, it

must have been defined within the program, which means that it cannot be

a required (predefined) procedure or function. 10 Second, the actual param-

eter (a procedure or function) and the formal parameter (a

procedural/functional-parameter) must have congruous formal parameter

lists. Remember that a formal parameter list consists of one or more for-

mal parameter specifications. To be congruous, each specification must:

1) contain the same number of parameters of the same type if they are

value-parameter- specifications; or

2) contain the same number of parameters of the same type if they are

variable-parameter-specifications; or

3) be procedural-parameter-specifications with congruous formal parame-

ter lists; or

4) be functional-parameter-specifications with congruous formal parame-

ter lists as well as the same result type.

. . . probably because the formal parameters of required procedures and functions will not

necessarily be able to meet the second rule.
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Finally, each parameter list must contain the same number of formal

parameter specifications. The two parameter lists shown below are not

congruous, even though they declare the same number and type of formal

parameters. The first parameter list contains only one formal parameter

specification, while the second has three:

(x,y,z: integer)

(x: integer, v: integer, z: integer)

9-4 The forward Directive

There are special circumstances in which the block of a procedure or func-

tion cannot appear in its usual place (immediately following the heading).

For example, the subprogram might have been externally compiled, or be

located in another file. The notion of directives was introduced into the

Standard to provide a means of dealing with these situations. A directive

follows the subprogram heading in place of its block, and acts as a special

instruction to the Pascal processor. The BNF of a directive is:

directive = letter { letter
I
digit } .

The BNFs of both procedures and functions refer to directives:

procedure-declaration = procedure-heading ' ;' directive

I
procedure-identification ' ;' procedure-block

I
procedure-heading ' ;' procedure-block .

Junction-declaration = Junction-heading ' ;' directive

I
Junction-identification ' ;' Junction-block

I Junction-heading ' ;' Junction-block .

When a directive is used, it follows the subprogram heading— the

subprogram's name, parameter list (and type, if it's a function). Thus, the

directive takes the place of the subprogram's block.

Only one directive is required in Pascal— forward It makes a

forward-reference whenever a procedure or function identifier must appear

in advance of its declaration. This situation is usually brought about by

mutually recursive subprograms, which are subprograms that call each

other. 11 However, there are times when a programmer wants to have a par-

ticular procedure or function heading appear early in the text of a program

for its effect on program documentation, even if it calls subprograms

declared later on.

Forward references are made like this: When the procedure or func-

tion heading first appears, it is followed by the directive forward. When

Suppose that A is declared first. How can a call to B appear within A? B hasn't been de-

clared. Yet declaring B first is no solution if B must contain a call of A.
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the text of the block finally shows up, it is preceded by a procedure-

identification or Junction- identification— Wit variety and name of the subpro-

gram.

procedure-identification = 'procedure' procedure-identifier .

Junction-identification = 'function' Junction-identifier .

The parameter list (and type, if it's a function) is not repeated. For exam-

ple:

program Rejerences (output);

• • . {Definitions and declarations.}

procedure Early (a, b, c: char); forward;

procedure Late (x, y, r. char; i, j: integer);

••. {Definitions and declarations.}

begin [Late]

' • . [Late's statement part contains a call of Early.)

end; [Late]

procedure Early; {Parameter list is not repeated.}

• •
. {Definitions and declarations.}

begin {Early)

end; {Early)

begin {Rejerences

)

end. {References)

9-5 Conformant Array Parameters (Level 1 Pascal Only)

Probably the most vocally reported shortcoming in [J&W] Pascal was its

lack of dynamic, or variable-length, array types. It was impossible to define

an array whose length depends in any way on program data. As a result,

general-purpose array-handling procedures could not be written; often a

severe shortcoming in non-instructional applications.

The omission was not accidental. Wirth felt that a processor should

have full knowledge of program characteristics when the program was

prepared for execution. This information lets the processor generate

appropriate and efficient instructions for handling such features as packing

and unpacking.

'The whole advantage of this scheme, however, immediately vanishes, if, for

example, we introduce so-called dynamic arrays, that is, if we allow informa-

tion about the actual dimensions of an array to be withheld from the

compiler— This not only impairs the efficiency of the code, but— more
importantly— destroys the whole scheme of storage economy [i.e.

packing]— A capable language designer must not only be able to select

appropriate features, but must also be able to foresee all effects of their being

used in combination.' [Wirth74]
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Of course, one need not agree with Wirth's assessment. B. Kernighan

has said that:

'This botch [no dynamic arrays] is the biggest single problem with Pascal. I

believe that if it could be fixed, the language would be an order of magnitude

more useful.' [Kernighan81]

while A.N. Habermann maintains:

'The true reason for not incorporating dynamic arrays in Pascal is probably

the fact that variable subranges can hardly be treated as a type.' [Haber-

mann73]

And, in fact, the necessity of providing secure type checking has been a

major obstacle to incorporating them into the language.

Originally, the ISO standardization effort did not intend to deal with

the issue of dynamic arrays, leaving it for specification as an 'official' exten-

sion to the language. However, several member countries protested so vo-

ciferously that a number of draft proposals for allowing the definition of

formal array-type parameters (whose lengths would depend on the actual

parameters of the subprogram call) were made.

Most of these proposals fell apart (generally in the area of providing

type security) when subjected to the intense scrutiny of twenty member
countries' Pascal experts. The surviving proposal does not allow true

dynamic arrays. Instead, it creates a new class of array-type parameters

whose arguments may have nearly arbitrary dimensions.

Unfortunately (or fortunately, if you prefer), the new proposal did

not meet with universal approbation. A compromise was hammered out-
there would be two 'levels' of Pascal, one incorporating the proposal, and

the other not. 12

In brief, a formal conformant array parameter includes read-only bound

identifiers as part of its definition. They set the bounds, or lower and upper

index U2-U3 limits, of the conformant array parameter's index (dimension size). The

conformant array parameter's actual parameter may be any array that is con-

confarmabie 91-92 formable with the formal parameter. Conformant array parameters may be

either value-parameters or variable-parameters, and they may be packed.

For example:

procedure Sum (var Total: real.,

Vector: array [Lower.. Upper: integer] of real);

var /: integer,

begin

Total := 0.0;

for /:= Lower to Upper

do Total := Total + Vector [i]

end;

12
Predictably, this caused problems as well. 'Numbering [the levels] and 1 is a barbarism

in the English language Levels 1 and 2 would be far preferable.' thundered the Australi-

ans [X3J9/81-98], who really preferred Standard Pascal and Extended Pascal. Addyman's re-

ply: 'One is then left with the problem of choosing two designations which are not derogatory.

One could choose Red Pascal and Green Pascal, perhaps, but not extended, subset, or other

emotive terms.' [Addyman81]
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Procedure Sum sums the components of an array. Its array-valued ac-

tual parameter may be any array whose components are real, and whose

single index is integer, or an integer subrange. Within Sum, the bound

identifiers Lower and Upper play their typical role as the initial-value and

final-value of a for statement. Given these declarations:

var Short: array [1..2] of real;

Long: array [— maxinL.maxint] of real;

Answer: real;

both calls below are correct:

Sum (Answer, Short);

Sum (Answer, Long)

9-5.1 Conformant Array Parameter Syntax

The formal explanation of conformant array parameters begins with the al-

ternative formulation of a formal-parameter- section.

formal-parameter-section > conformant-array-parameter-specification .

conformant-array-parameter-specification = value-conformant-array-specification

I
variable-conformant-array-specification .

value-conformant-array-specification = identifier- list
' :' conformant-array-schema .

variable-conformant-array-specification = ' var' identifier-list
c

:' conformant-array-schema .

A value-conformant-array, like a value-parameter, creates a local copy

of its actual parameter. Modifying a value-conformant-array has no effect

on the actual parameter. A variable-conformant-array, in contrast, is like a

variable-parameter— it is a local renaming of its argument. Thus, changing

a variable-conformant-array also changes its actual parameter.

In either case, when an identifier appears in the identifier-list of a

conformant array parameter specification, it becomes defined as a parameter

whose region is the formal parameter list that immediately contains it, and regions 59-63

as a variable identifier whose region is the block of the subprogram it is a

parameter of. In addition:

1) All the formal parameters in any particular identifier-list share the

same (unnamed) type.

2) This type (like a new-type) is distinct from any other type. Thus, two

or more absolutely identical conformant array specifications define for-

mal parameters with different types.

3) A formal conformant array parameter cannot be a string type, because

its type isn't denoted by an array-type (as defined in section 11-2). 13

This restriction denies formal conformant array parameters the special privileges associated

with string types. Although the syntax of a packed-conformant-array-schema (below) is simi-

lar to the syntax of a string type array, it is not the same. A string may be a parameter of

such a schema, though.

new-types 95-96

string types 117-119
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4) If the identifier-list of a single conformant array specification defines

more than one formal parameter, then all its actual parameters must

same types 95-96 have the same type.

For example, suppose we have the heading:

procedure P (A,B: array [i.J: Tl] of T2;

CD: array [m..n: Tl] of 72);

Variables A and B have the same type, and thus are assignment com-

assignment compatibility patible. The same is true for C and D. However, the type of A and B is

10-11 distinct from the type of C and D, and assignments may not be made
between them. Finally, according to rule 4, both actual parameters of A
and B (and both actual parameters of C and D) must have the same type.

A conformant- array- schema (which I'll just refer to as a schema)

serves as the 'type definition' of a conformant array parameter. A schema
packing 101, 119-121 may be packed or not, just like an ordinary array type definition. However,

the Standard restricts any packed schema to a single index (because of

implementation considerations).

conformant-array-schema = packed-conformant-array-schema

I unpacked-conformant-array-schema .

packed-conformant-array-schema = 'packed' 'array' 'I' index-type-specification T
'of type-identifier

.

unpacked-conformant-array-schema = ' array' '
I' index-type-specification

{
';' index-type-specification} ']'

'of ( type-identifier\ conformant-array-schema) .

Notice that an unpacked schema doesn't necessarily close with a type

identifier. But if it does, that type is the schema's fixed component type.

The definition of an unpacked schema is recursive. This can lead to

lengthy definitions, in which one schema immediately contains another,

which in turn contains a third, etc. For instance:

array [index-type-specification] of array [index-type-specification] of etc.

To simplify matters, an equivalent shorthand form is allowed. The

sequence '] of array [' is replaced by a semicolon; e.g.:

array [index- type-specification; index-type-specification\ ... ] of etc.

We finish the BNF of conformant array parameters with their bound

identifiers.

index-type-specification = identifier '
.

.

' identifier ' :' ordinal-type-identifier .

bound- identifier = identifier .

factor > bound-identifier

.

Bound identifiers denote the lower and upper limits of the index-type

array types 112-119 required in an array type definition:
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array-type = 'array' T index-type {
',' index-type} T 'of component-type .

index-type = ordinal-type .

One can intuitively appreciate the close tie between an array's index-

type, and a schema's index-type-specification.

1) If an w-dimensional array can be thought of as having n index- types,

then the /th index-type is said to correspond to a schema's /th index-

type-specification.

2) The first bound identifier denotes the smallest value of its correspond-

ing index-type, and the second bound identifier denotes that index-

type's largest value.

3) The type of a pair of bound identifiers is the same as the type of its

corresponding index-type. 14

The region of bound identifiers is the formal parameter list that

immediately contains their specification, as well as the block of the pro-

cedure or function whose heading their specification appears in. Bound
identifiers are neither variables nor constants, which means that they can-

not be assigned to; nor can they be used in constant or type definitions.

Nevertheless, a bound identifier denotes a value. It is classed as a factor, factor 41-42

and also provides an alternative BNF for factor.

9-5.2 Conformability

The types of a conformant array parameter and its argument must

conform.
15 Suppose that we have the 'givens' listed below. They are

named in a peculiar manner because we are being required to treat poten-

tially w-dimensional arrays as though they were just one-dimensional. We
can get away with this because the full and shorthand forms of array (and

conformant array) type definitions are equivalent. This odd starting posi-

tion lets us state the rules for conformability recursively (a mixed blessing

if there ever was one). Suppose that

1) 77 is an array-type with a single index-type.

2) T2 is the type of the bound identifiers of a conformant array parame-

ter that immediately contains a single index-type-specification.

A value of type 77 conforms with a conformant array parameter if all

four statements below are true. (Note the slight hedge in requirement 2.)

1) The index-type of 77 is compatible with T2. compatible types 10-n

2) The smallest and largest values of the index-type of Tl lie in the

closed interval given by T2. It is an error if the smallest or largest

value falls outside the interval.

Which may often be a subrange of the type of their ordinal-type-identifier.

Additional restrictions are placed on value-conformant-arrays.

91



fixed component type 90

9 Subprograms and Parameters

3) The component-type of 77 (i.e., the type of the array's components)

is the same as the conformant array parameter's fixed component

type, or

the component-type of 77 conforms to the conformant array

parameter's conformant-array-schema. 16

4) Both 77 and the conformant array parameter are either packed or not

packed.

Requirement 3 is recursive, which makes everything seem very com-

plicated. In effect, we compare the conformant array parameter's index-

type-specification to its argument's corresponding index-type. If types

match all down the line, the two conform.

variable-access 70

activations 63-64

packing 101, 119-121

9-5.3 More Variable-Conformant-Array-Parameter Restrictions

A variable-conformant-array-parameter, like an ordinary variable-parameter,

is a local renaming of a relatively global argument. The actual parameter

(which is a variable-access) is accessed prior to the activation of the block it

is an argument of. This access is maintained for the entire activation of the

block. As usual, the actual parameter may not be a component of a packed

variable. However, a conformant array parameter can serve as the argu-

ment of a variable-conformant-array-parameter as long as it conforms, as

described above.

procedure VectorAddition (var X,Y,Z: array [Least.. Greatest: Limits] of real);

var Counter: Limits;

begin

for Counter : = Least to Greatest

do XiCounter] := Y[Counter] + Z[Counter]

end;

In procedure VectorAddition, Y and Z are defined as variable-conformant-

arrays (for reasons described below) so that their actual parameters may be

conformant array parameters themselves.

9-5.4 Value-Conformant-Array-Parameters

Value-conformant-array-parameters are considerably more restricted, for

reasons that have to do with the implementation of value-parameters in

general. In effect, a value-conformant-array is a local variable that is initial-

ized by its actual parameter. Modifying the formal parameter has no effect

on the actual parameter.

The actual parameter is an expression: in this case, it is either a

strings 117-U9 variable-access or a string constant. It may not be a conformant array

16
Recall that an unpacked schema doesn't necessarily end with the specification of a type

identifier (the schema's fixed component type).
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parameter. Clearly, there are circumstances that may require some
modification of usual programming conventions. Parameters used as

value-conformant-arrays may have to be defined as variable-conformant-

arrays (just so that their arguments can be conformant arrays). See pro-

gram VectorAddition, above, for an example.

There are two situations in which a conformant array parameter may
be part of a value-conformant-array's actual parameter. 17

1) The conformant array parameter can be used to help denote an

indexed-variable (a representation of one array component) that serves indexed variables

as the actual parameter. The indexed-variable's type (that is, the type 70
-
HS-117

of the component it represents) must be the same as the value-

conformant-array's fixed component type.

2) The conformant array parameter can appear as an argument to a func-

tion call that in turn helps denote an indexed-variable (as above).

Again, the indexed-variable's type must be the same as the value-

conformant-array's fixed component type.

For example (on the next page):

17 The Standard puts it this way:

if the actual-parameter contains an occurrence of a conformant-array-parameter then for

each occurrence of the conformant-array-parameter contained by the actual-parameter,

either a) the occurrence of the conformant-array-parameter shall be contained by the

function-designator contained by the actual-parameter, or b) the occurrence of the

conformant-array-parameter shall be contained by an indexed-variable contained oy the

actual-parameter, such that the type possessed by that indexed-variable is the fixed-

component-type of the conformant-array-parameter. ' [6.6.3.7.2]

Such sentences have been thought to provide an existence proof for the undesirability of con-

formant array parameters.
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program Shell (input, output);

type Ray = array ['A'..'Z'] of integer,

var Arc: array [1..10] of Ray;

procedure Inner (B: array [i.m: char] of integer);

begin

end ; { Inner)

procedure Outer (A: array [i.J: integer] of Ray);

var 5: array ['A'..'Z'] of Ray;

K: integer;

begin {Owte/-}

/««er (/1[/+ 1]); {Example of case 1.}

Inner (B[chr(A[K])]); (Example of case 2.)

{Assume that ' A ' < cM^W) < 'Z'.)

end ; { Outer)

begin {S/k?//}

Owter (/Ire);

end. {Shell}

Disallowing conformant array arguments to value-conformant-arrays

ensures that a subprogram's activation record can have a fixed size.
18 This

restriction simply makes it easier to develop Pascal processors, and isn't

required by any insurmountable limitation inherent to computers.

The Standard goes so far as to specify a particular method for imple-

menting value-conformant-arrays. Suppose that an expression E is passed

to a value-conformant-array A. The value of E is attributed to an 'auxili-

ary variable' X (that is created by the processor, and does not otherwise

exist in the program) before the activation of A's block. Naturally, the

type of X is the same as the type of E.

Within A's block, the value-conformant-array A (and its associated

variable identifier) refers to the auxiliary variable X for the entire activa-

tion. Since there is a ban on passing conformant array parameters to

value-conformant-arrays, the types of E and X will always be known at

compile-time, and all activation records can be of a fixed size.

We can think of an activation record as being the minimum set of data associated with a

subprogram call (prior to the execution of its algorithm). This includes the names, types, and

sizes of its parameters and local variables.
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The variety of data types available in Pascal, coupled with the programmer's

freedom to define new types, has been a prime reason for the language's

success. The notion of type serves several purposes. It can be the basis of

automatic checks that improve program consistency and reliability, if not

correctness. Type definitions also give the Pascal processor enough infor-

mation to choose efficient storage representations for variables. But most

important, types— especially structured types— allow data structuring

methods that simplify programming tasks. It is largely for this reason that

in Pascal:

'...fundamental concepts [are] clearly and naturally reflected by the

language.'
1 [J&W]

Although Pascal provides a rich variety of data typing and structuring

techniques, it stops short of defining an exhaustive set of operators to go

with them. 2 This must be seen as a compromise in Pascal's design— the

programmer is allowed a mix of data types, but must often declare special

procedures and functions (but not operators) to manipulate them. The ad-

vantage of this compromise is that Pascal is kept to a reasonable size; its

disadvantage is that Pascal may not have the 'industrial strength' required

for highly specific applications. 3

There are three categories of types in Pascal— simple, structured, and

pointer. Types are described and named in type definitions, then these

names are used in variable, parameter, or function declarations.

type-definition-part = [
' type' type-definition ' ;'

{ type-definition ' ;'
} ] .

type-definition — identifier ' =
' type-denoter .

type-denoter = type-identifier I
new-type .

new-type = new-ordinal-type] new-structured- type] new-pointer-type .

By definition, a new- type is a type that is distinct from all other types.

Consequently, the BNF above allows an inference about the 'equivalence'

of types in Pascal. Two named types are the same if, and only if, they

derive from the same type identifier. Suppose that 77 is a type identifier:

Well, to be fair, A.N. Habermann claims that:

'The most unsatisfactory aspect of the Pascal language is the artificial unification of

subranges, types, and structures.' [Habermann73]

For instance, APL includes an extensive set of operators for array manipulation, while FOR-
TRAN allows operations on complex numbers. Pascal has neither.

The natural solution to this problem— let the programmer define operators and/or

operations— surfaced in the late 1970's in languages like CLU and Ada.
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type

72= 77;

T3= T2-

Types 77, 72, and T3 are all the same type. If 77 or T3 were defined with

a new-type—even if it were character-for-character identical to the

definition of 77— it would denote a different type.

Type sameness becomes an important issue on two occasions: for

determining the validity of assignments, and when arranging for subpro-

gram parameter declarations and arguments. Variables VI and V2 must
have the same type when:

1) They are both records, and VI is being assigned to V2.

2) They are both arrays— but not string types—and VI is being assigned

to V2.

3) VI is a variable-parameter, and V2 is its argument.

A general chart of a type definition part in Pascal is:

type-definition-part

type type- identifier—*-= *> type-identifier

iZZ
identifier

1 ')• ">

-constant —*>..

—

—constant ——

"f
—

—type-identifier ">

-packed
j

-array-type
-

-record-type

-set- type
—

-file-type
—

">

J
10-1 Simple Types

A simple type is a collection of elementary, indivisible data items,

simple types are divided into two categories— real and ordinal.

simple-type = ordinal-type
I real-type-identifier .

The

The real type is required in Pascal. Its values are an implementation-

defined subset of the real numbers, as described in section 3-1. Synonyms
for real can be defined:
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type Precision = real;

Type Precision is the same type as real. Subranges of real can't be defined,

and there is no concept of double-precision real's in Pascal.

Ordinal- types are characterized by being enumerable. Values of an

ordinal type can be numbered, and compared for equality and relative posi-

tion.

ordinal-type = new-ordinal-type \ ordinal-type-identifier .

ordinal-type-identifier = type-identifier

.

The three required ordinal type-identifiers integer, boolean, and char, are

described in section 3-1. An ordinal type that is defined with the identifier

of an existing ordinal type becomes a synonym for that type. For example:

type Natural = integer,

Number = Natural;

Natural, Number, and integer all denote the same type.

Although the required simple types are deemed sufficient for ordinary

input and output of program data, additional types can be created by

defining new categories of values, or by restricting existing ones. Such

definitions are called new- ordinal- types.

new-ordinal-type = enumerated-type
I
subrange-type .

new-ordinal-type

<z
(—^—» identifier -^ ^)

constant—**..—^constant -

10-1.1 Enumerated Ordinal Types

An enumerated- type is a group of values that are named and ordered by the

programmer.

enumerated-type ='(' identifier-list ')'
.

identifier-list = identifier {
' ,' identifier } .

For example:

type Color = (Red, Green, Blue, Orange);

PinStatus = (Low, High);

Interrupts = (Stop, Kill, Wait, Trap, Pipe, Bus, Child);

The order of enumerated values is textual. If Red precedes Blue in the

definition of Color, then Red is less than Blue. Counting of ordinal posi-

tions begins with zero— in the definition of type Interrupts, Stop is in the

'zeroth' ordinal position, while ord(Kill) is 1.
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10 Data Typing and Simple Types

The identifiers that name the values of an enumerated type are that

type's constants just as 'A', 'B', 'C, etc., are the constants of type char.

However, the constants of enumerated types (unlike constants of the

required types) don't have external character representations, and can't be

textfiles 131-134 read or written to or from textfiles— in particular, from the standard input

and output.

If the values of enumerated ordinal types can't be read as input, or

printed, what good are these types? In small programs, enumerated types

often provide the values of 'state' variables that control program actions.

Enumerated types are also found in larger programs, where they name col-

lections of abstract values: potential error conditions, job classifications,

device names, marital status, employment categories, etc. All these divi-

sions could be represented as numbers (a la FORTRAN), 4 but that can

cause awful confusion in nontrivial programs. Letting new types be

enumerated as needed makes a major contribution to the transparency of

Pascal programs.

An identifier that denotes a constant of an ordinal type may not be

redefined within the current block. As a result, it can't be used as a con-

stant of another ordinal type. These definitions are illegal:

{illegal example}

type Odds = (1, 3, 5, 7, 9);

Deficiency = (Pellegra, Rickets, Scurvy);

Illness = (Rickets, Yaws, Beriberi);

var Beriberi: integer;

because the constants of Odds are predefined as integers, because the

identifier Rickets appears in two different enumerated type definitions, and

because Beriberi is simultaneously defined as a constant and declared as an

identifier.

However, the identifier of an enumerated-type constant may be

redefined in an enclosed block without affecting its host type.

program Test (output);

type Color = (Red, Green, Blue, Orange);

procedure Trial;

var Green: integer;

Hue: Color;

etc.

In the example above, the redefinition of Green has no effect on the

enumerated type Color except that the identifier Green now refers to a vari-

able of type integer, rather than a constant of type Color.

In fact, this is how processors usually deal with enumerated types; but it is the processor's

job, not the programmer's.
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This has some unexpected effects. For instance, the statement below

may appear within Trial:

for Hue: = Red to Orange do writeln ('Hi.')

because it does not contain any applied occurrences, or appearances, of

Green as a constant. In contrast, this statment:

for Hue: = Green to Orange do writeln ('Hi.')

is illegal, because the integer variable denoted by Green is not assignment

compatible with the Co/or-type control variable Hue. The Color constant

Green still exists, but it can no longer be referred to by name.

10-1.2 Subrange Types

The division of values into types is, by itself, of major importance for reli-

able programming. In Pascal, though, individual ordinal types can be

further refined through the definition of subrange types. A subrange type

consists of a contiguous group of values that nominally belong to the

subrange's host type.
5 A variable of a subrange type has the characteristics

of a variable of its host type, except that it is an error to assign the variable

a value that does not fall into the proper subrange.

subrange-type = constant''..'' constant.

The constants that delimit the subrange must both belong to the same
host type, naturally, and the lower bound must be less than or equal to the

subrange's upper bound. Partially relying on earlier examples, we have:

type

Positive = \..maxinf, {host type integer)

TwoBits = -25.. 25;

Index = 0..50;

Primary = Red..Blue; {host type Color)

ShortButLegal = 'A'. .'A'; {host type char)

Characters = 'a'..'z';

Subranges of type real may not be defined, because all subranges must
belong to ordinal types.

The attraction of subrange types is their contribution to programming
methodology, although it is reasonable to suppose that a processor might

use the information in a subrange definition to tailor efficient storage for

variables of that type.
6 Since it is an error to assign a variable of a subrange

type a value that does not fall in the subrange, it is possible to give vari-

Often called the underlying type.

The fact that a variable of type Index requires only six bits might become important if it

were allocated in the tens of thousands— say, as an array component.
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10 Data Typing and Simple Types

ables restrictive invariant properties— in effect, assertions about current

conditions are associated with the use of subrange variables, rather than

with statements inserted at specific program points.

An ultimate check on the propriety of assignments is made at run-

time via the type mechanism. 7 However, the (usually) fatal nature of a

failed test makes it incumbent on the programmer to provide careful checks

for improper assignments.

Note that it's an error, rather than a violation, to assign a variable a

value that falls outside its subrange (although it is, of course, a violation to

assign it a value of a different host type). This would seem to compromise

the security offered by subrange types, because properly documented pro-

cessors can choose to ignore errors! Error status is granted because poten-

tially incorrect assignments can't always be detected at compile-time

without inspecting program data, or knowing some implementation-

dependent features of a processor.

Consider this situation:

type LowRange = 1..5;

MidRange = 1..10;

HighRange = 6.. 20;

var LowValue: LowRange;

MidValue: MidRange;

HighValue: HighRange;

Although an assignment like:

Low Value : = High Value

assignment compatibility will always be an error according to the rules of assignment compatibility,

10-11 the assignments:

LowValue := MidValue;

High Value : = MidValue

may or may not be valid, depending on the current value of MidValue. If

there is an error, though, any self-respecting processor should detect it at

run-time.

Subranges also increase the transparency and self-documentation of

programs. Declarations like:

var Dependents: 0..15;

KilnTemperature : 0. . MaximumSafeTemperature;

obviously contain more useful information than:

var Dependents, KilnTemperature: integer;

-i

Not always, unfortunately. Some processors have a run-time mode that turns such checks

off. This mode may even be the default.
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Structured Types

The simple data types allow the creation of variables that represent single

values. Structured types, in contrast, provide the template needed for struc-

tured variables that can store more than one value. Since structured types

may be built from structured types themselves, a wide variety of types can

be defined in Pascal.

A structured type is not a data structure, although they're often con-

fused. A data structure— a stack, a list, a tree— is a means of organizing

data that has certain rules for adding, deleting, or finding data associated

with it. It's generally possible to create a given data structure using a

variety of structured types.

A structured type— a record, set, file, or array— is a building block

whose characteristics (the operations that can be performed with it, or on

it, in Pascal) make putting together a given data structure easier or more
difficult. Each structured type has features that make it more or less attrac-

tive for any given application.

Any of Pascal's four basic structured types may be designated as being

packed, which tells the processor to economize storage requirements for

variables with that type.

structured-type = new-structured-type
I
structured-type-identifier .

new-structured-type = [ 'packed' ] unpacked-structured-type

.

unpacked-structured-type = array-type\ record-type\ set-type\ file-type .

By definition, a new-structured-type is distinct from any other new
type; it is not the 'same' as another new-structured-type. This definition of

'newness' precludes structural equivalence of structured types.

Defining a type as packed will often increase the time or space

required for accesses of, or operations on, variables of that type. Packing is

transparent to the user, but the programmer should remember that:

1) A packed array of char whose index begins with 1 is a string-type. 1

2) A packed set type is not compatible (and therefore, not assignment

compatible) with a set type that is not packed.

3) Components of packed variables may not be the actual parameters of

variable-parameters. (They may appear in calls of new, read, or

readln, though.)

4) The required transfer procedures pack and unpack are only used in

conjunction with packed array types.

string types 117-119

pack, unpack 119-121

1

String-type variables can be written to textfiles, and, under certain circumstances, may be

the operands of the relational operators.
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11 Structured Types

11-1 The record Type

Of the four elementary structured types, the record is probably the most

ubiquitous in Pascal. Pascal owes a debt to COBOL here, since that

language first introduced the record as a data structure. Wirth was quite

aware of this:

'The introduction of record and file structures should make it possible to

solve commercial type problems with Pascal— This should help erase the

mystical belief in the segregation between scientific and commercial program-

ming methods.' [Wirth70]

Although records seldom appear as individually declared variables,

they frequently act as components of array and file types, and help make
the creation of linked data structures possible. To help set a firm founda-

tion for the other types, we'll look at the record structure first.

A record structure consists of any number of fields. Unlike the com-

ponents of arrays or files, fields have individual identifiers. However, a sin-

gle record may include fields of different types (whereas all the components

of an array or file must belong to a single type). A record's fields are

named in a field list. A preliminary BNF for a record-type definition is:
2

record-type = 'record' field-list'' end' .

field-list = [ ( fixed-part [
' ;' variant-part ] I

variant-part )[';']].

The BNF of a field-list is quite complicated (because of record vari-

record variants 107-112 ants), so for the time being, I'll limit discussion to records that only have

fixed parts. Such records (i.e., with fixed parts only) always have the same
number and type of fields.

3 A fixed part is essentially a list of field-

identifiers and their types.

fixed-part = record-section {
' ;' record-section } .

record-section = identifier- list':' type-denoter

.

identifier- list — identifier {
' ,' identifier } .

type-denoter = type- identifier \ new-type .

I'll draw the chart of a record with fixed-part only as:

record with fixed-part only

V ., .£ s~*-type- identifier—

\

record >-*• identifier—k
—: < r

,V-—

'

^-^new-type /

Cend

2
The full BNF accompanies the discussion of records with variant parts. -

In effect, a variant part specifies alternative fixed parts. If a record type has a variant part,

its structure (its number and type of fields) can be modified at run-time.
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For example:

type

Coordinates = record

x,y: real

end;

Apartment = record

Floor: integer;

Letter: char;

Wing: (North, South, East, West)

end;

var Position, Location: Coordinates',

ToLet, ForLease: Apartment;

Building : array [ 1 . . 1 00] of Apartment;

Workers: array [1..1000] of record

Name: record

LastName, FirstName: packed array [1..15] of char

end;

Married: boolean;

Age: Positive; {Assume Positive is an integer subrange.}

Job: Classification; (Assume Classification is an enumerated type.}

HireDate: I960.. 1990

end;

The defining points of field identifiers occur in a region that is distinct regions 59-63

from the rest of the type definition part. Although field identifiers must be

unique within a given record definition, they do not conflict with identifiers

used outside the current record's definition.
4

An enclosed record definition establishes a new defining region. This

is a legal series of definitions:

type a = real;

b = boolean;

c = record

a: record

a, b

end;

b: integer

end;

char

Identifiers used in record c don't conflict with identifiers used in either

record a, or the rest of the type definition part.

Thus, the definition: type A =record A: char end is legal.
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11-1.1 Record Variables and Field-Designators

Assignments may be made between two record variables that are assign-

ment compatible. For record types, assignment compatibility means that

entire-variables 70 both variables must have the same type. The entire-variables ToLet and

ForLease are assignment compatible with each other, as well as with the

components of the array variable Building.

ToLet : = ForLease;

Building [1] := ToLet;

Building [2] := Building [1]

In an assignment between record variables, each field of the left-hand

variable is assigned the value of the corresponding field of the right-hand

variable. Such an assignment is an error if any field of the record variable

on the right is undefined.

Individual fields may be accessed as well. A field- designator is usually

constructed from the record-variable's identifier, a period, and an individual

field's identifier.
5

field-designator = record-variable'.'' fieId-spec(fieri field-designator-identifier .

A field-designator is a variable-access that may be assigned to, passed as a

parameter, etc.
6

readln (Position.x, Position.y);

ToLet. Floor := 2;

ToLet. Letter : = 'K
'

;

ToLet. Wing : = East;

ToLet. Floor := ForLease. Floor

If a field-designator is a component of another structured variable, or if it

denotes a structured object, a variable-access may get a bit longer:

Workers[\\.Name.LastName := 'Carangi ';

Workers [1 ] . Name. FirstName : = ' Gia ';

Workers[\]. Married :— false;

Workers[\]. Age := 24;

Workers [ 1 ] . Job : = Model;

Workers [1 ] . HireDate : = 1 982

The relational operators may not be applied to record-type operands.

Two records can only be compared for equality field-by-field:

Within the purview of a with structure (below) the field's identifier alone is a field-

designator-identifier.

The only substantive difference between an entire-variable and a field-designator is that a

field-designator can't serve as a for statement's control variable.
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{See if two records' fields are equivalent.}

if (ToLet. Floor=ForLease. Floor)

and ( ToLet. Letter =ForLease.Letter)

and ( ToLet. Wing=ForLease. Wing)

then writeln ('ToLet and ForLease are equal.')

else writeln ('ToLet and ForLease are not equal.')

11-1.2 The with Statement

In practice, we'll often want to access several of a record's fields in a single

sequence of statements. When a record variable's name is long or

unwieldy, the with statement allows a convenient shorthand.

with-statement = 'with' record-variable-list'' do' statement,

record-variable-list = record-variable {
',' record-variable} .

record-variable = variable-access

.

Its chart equivalent is:

with statement

Iwith *»record-variable

C do

—

+-statement

Formally speaking, the record-variable-list is the defining point of a

field- designator- identifier (whose region is the with statement's statement), regions 59-63

for every field of the record.

field-designator-identifier = identifier

.

After a record variable appears in a with statement's record-variable-

list, its field names denote fields for the remainder of the with statement's

action. Fields can be referred to without being preceded by the record

variable's name and a period. For example:

with ForLease do begin

Floor := 2;

Letter := 'K';

Wing : = East

end

Within a with statement, then, there are two ways to access a given

field. The assignments below are identical:

with ToLet do begin

Floor : = 1

;

ToLet. Floor := 1

end
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The BNF of a record-variable-list allows more than one record vari-

able. A statement of the form:

with VI, V2, • • • , Vn do SI

is equivalent to the sequence of nested statements:

with VI do

with V2 do

with Vn do 57

If VI, V2, etc., do not share any field identifiers, then the nesting of

regions implied above doesn't cause any problems. But why bother with

such an obvious example? Let's get right to the most pathological case—

a

list of variables that have the exact same record type. For example, let's

look at:

with ToLet, ForLease do SI

which is equivalent to:

with ToLet do

with ForLease do SI

The outer with statement is the defining point for a group of field-

designator-identifiers whose region— their maximum potential range of

meaning— includes the nested with statement, as well as SI. But the inner

with statement is also a defining point. Thus, its region is removed from

the scope (or actual range of meaning) of the field-designator-identifiers

defined in the outer with statement. As a result, these statements are

equivalent:

with ToLet, ForLease do Floor := 3;

ForLease.Floor := 3

The field-designator-identifier Floor does not access the Floor field of

ToLet. Individual fields of ToLet must be referred to the longhand way:

with ToLet, ForLease do begin

Floor := 3;

ToLet. Floor := 3

end

The Standard modifies a rather arbitrary restriction mentioned in

[J&W]. According to the Standard, when a with statement is entered any

record variable given is accessed before the with-statement's action is exe-

cuted. Furthermore, this access establishes a reference to the record vari-

able for the entire duration of the with statement. This is important when
the record variable is itself a component of another variable. For example:
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with ArrayO/Recordsli] do begin

/:= i+l;

etc.

The assignment to /, which was simply forbidden in [J&W], does not cause

a different record to be accessed.

11-1.3 Type Unions With Variant Parts

The record structure is a type union that makes three distinct contributions

to data typing in Pascal.

1) A record is a heterogeneous structure, because its fields can have

different types.
7

This is the feature we've taken advantage of so far. Although a

record's fields may have had different types, the record's true structure was

fixed at compile-time. Every variable of a given record type has had the

same number and type of fields.

2) A record structure lets variables of different types (and disjoint life-

times) be overlaid.

In this section we'll see how to define a record that consists of alter-

native groups of fields that share a single fixed field called the tag field.

The tag field's value, at run-time, determines which of the alternative

groups is active. In this application, a record is known as a discriminated

type- union. It is a union, or merger, of several different record types. We
can discriminate, or distinguish, a record's current structure through the

value of its tag field.

3) Although it is nominally an error, and will undermine program porta-

bility, records allow a certain way of getting around Pascal's type

rules.

A record can be defined (and even serve) as an overlaid type (as

above). However, it need not be given a tag field. This makes it a free

type- union. There is no way to determine such a record's structure at run-

time. 8
If the error mentioned above is not detected by a processor, a value

can be stored as though it belonged to one type, then retrieved as a value

of another type entirely. 9

In contrast, a structure like an array or file is homogeneous— every component must be of

the same type.

This is the method used by the C programming language. In C, a record is either entirely

fixed, or is a free type-union.

For instance, Pascal does not allow a pointer variable's actual value to be inspected. If, how-

ever, it is stored in a record as a pointer, then later read as an integer, Pascal's restriction can

be sidestepped.
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The records we've seen so far have only had fixed parts. We can use

records as discriminated or free type-unions by defining one or more

variant- parts in addition to, or in place of, fixed parts. The exact syntax

used to define the variant part makes it a discriminated or free type-union.

record- type = 'record' field- list' end' .

field-list = [ ( fixed-part [ ' ;' variant-part ] I
variant-part ) [';']] .

fixed-parts 102 The fixed-part has already been introduced as:

fixed-part = record-section {
' ;' record-section } .

record-section — identifier- list
' :' type-denoter .

identifier- list = identifier {
' ,' identifier } .

type-denoter = type-identifier\ new-type .

A variant-part superficially resembles a case statement. The form of

the variant- selector , below, determines whether the variant part is a

discriminated or free type-union. If a tag-field is given, it is discriminated;

if no tag-field is specified, it is a free union. In either case a previously

defined ordinal type must be specified as the tag- type. Inasmuch as the

tag-field is optional, 'tag-type' is an unfortunately misleading name— 'case-

constant-type' might get the idea across more clearly.

variant-part = 'case' variant-selector 'of variant {
';' variant) .

variant-selector — [ tag-field' :'
] tag-type .

tag-field = identifier

.

tag-type = ordinal-type-identifier

.

Note that the tag-type must be a type identifier. Unlike the type of an ordi-

new-types 95-96 nary field, it cannot be given as a new-type.

One or more constants of the tag-type must correspond to each variant

group of fields by appearing in a case-constant-list. Each case-constant-list

must contain unique identifiers, and the field names used in each field-list

must also be distinct.

variant = case-constant-list ':' '(' fieId- list ')'
.

case-constant-list = case-constant [
' ,' case-constant } .

case-constant = constant .

It is an error if any value of the tag-type cannot be found in a case-

constant-list. 10 Fortunately, the field-list associated with a case-constant-list

may be empty—remember that its entire BNF is given between square

brackets. In chart form:

Which means that, for all practical purposes, type integer won't ever appear as a tag-type

(although a subrange may be appropriate). Incidentally, error status, in this case, was a bitter-

ly debated question.
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Examples will make this a lot clearer. First, a record that is a discrim-

inated type-union. Aside from the tag field {Figure) there are no fixed

fields.

type Shape — {Circle, Square, Triangle, Point);

Dimensions = record

case Figure: Shape of

Circle: {Diameter: real);

Square: {Side: real);

Point: {);

Triangle: {Sidel: real; Angle1, Angle!: 0..360)

end;

var Object: Dimensions;

1) The variant-selector Figure: Shape serves as the defining point of a

field named Figure.

2) Although the case-constant Point has no fields associated with it, it

corresponds to an empty field list (avoiding an error). 11

3) The field identifiers defined in each variant are distinct from any other

field identifiers defined elsewhere within the same record.

That's why the first field in the field-list corresponding to Triangle is called

Sidel — the identifier Side had already been taken.

You might notice that requiring an empty pair of parentheses is somewhat inconsistent,

since a subprogram call without parameters does not require an 'empty' parameter list. Wel-

come to life in the big city.
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It's not hard to take advantage of the parallel construction of discrim-

inated type-unions and case structures. This case statement determines the

currently active (see below) variant of Object, and takes an appropriate ac-

tion:

case Object.Figure of

Circle: readln {Object.Diameter);

Square: readln (Object.Side);

Point: ; {Notice that parentheses aren't needed (or allowed) here.}

Triangle: readln (Object.Sidel, Object.A nglel, Object.Angle!)

end

Once an assignment to the tag field Figure has been made, the field

list corresponding to the value of Figure is said to be active.
12 A field list

that is not active is totally undefined. Suppose that we have made these

assignments:

with Object do begin

Figure : = Triangle;

Sidel:= 23.5;

A nglel := 45;

Angle2:= 22

end

Were we to then make the assignment:

Object.Figure := Circle

the Object.Diameter field would be undefined.

1) It is an error to reference a field of a variant part that is not currently

active.

2) It is an error to pass the tag field of a variant-part as the argument of

variable-parameters 81-83 a variable-parameter.

Notice that rule 1 places a constraint on the order of assignments.

The pair:

Object. Figure := Circle;

Object.Diameter := 5.0

is legal, but the reversed assignment is not:

{illegal example}

Object.Diameter := 5.0;

Object. Figure := Circle

The importance of 'activation' varies. In some languages (like Modula and Ada) it is a vio-

lation to access an 'unactivated' field. A less strict language (like Pascal) treats such an access

as an error. This opens the door to the type 'change' mentioned a few pages back.
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A free type-union can be defined like this:

type Flavor = {Chocolate, Vanilla, Strawberry);

Cone = record

case Flavor of

Chocolate: (Cocoa, Thickness: integer);

Vanilla: (VanillaBeans: integer; Available: boolean);

Strawberry: (Berries: integer)

end;

var Dessert: Cone;

Some assignments are shown below. In effect, the processor automatically

activates the correct variant part after an assignment. 13

Dessert.Cocoa : = 100; [Chocolate variant active, all others undefined.}

Dessert. Thickness : = 3;

Dessert. Berries := —40 [Strawberry variant active, all others undefined.}

Notice that the tag-type (Flavor) serves no purpose except to help

document the record definition. As far as any application of Dessert is con-

cerned (such as in the assignments above), the definition below is

equivalent to the earlier one:

type Flavor = 1..6;

Cone = record

case Flavor of

1,2: (Cocoa, Thickness: integer);

3: (VanillaBeans: integer; Available: boolean);

4: (Berries: integer);

5,6: ()

end;

It's useful to summarize some of the rules that pertain to record vari-

ants.

1) All field identifiers must be unique within the current record

definition, regardless of variants. They may be reused within a nested

record definition.

2) The case-constant-list of every variant must contain at least one con-

stant of the tag-type. Case-constant-lists may not share any constants.

3) It is an error if any constant of the tag-type does not appear in a case-

constant-list. However, the field list it corresponds to may be empty
(shown by empty parentheses).

4) When a variant is not active, its fields are totally-undefined.

However, it might not check the currently active variant before an inspection, and may let

an inactive variant be inspected. This is an error, of course.
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5) It is an error to access any field of a variant that is not active.

6) The tag field of a variant part may not be the actual parameter of a

variable-parameter.

Additional restrictions are discussed along with procedures new and dispose

in section 12.

11-1.4 Final Comments

Pascal's approach to type unions should be viewed in historical perspective.

Allowing fixed fields only would be a great inconvenience in a strongly

typed language like Pascal. It would often be necessary to define many
more fields than are ultimately needed in a single record type, wasting

storage space and programmer time.

Type-unions imply that the alternative groups of fields will be overlaid

in memory. Since only one group is activated at any time, all the groups

can share the same area in memory. However, the tag fields of discrim-

inated unions can be expensive— not only because of the space they take,

but because of the necessity (in a rigidly discriminated type-union) of per-

forming a run-time check on the tag field's value before allowing a given

field to be accessed (i.e., to see if that field currently 'exists').

Free type unions blithely ignore run-time checks entirely. This is use-

ful for storing a value as an object of one type, then retrieving it as though

it were a value of another type. Motivations for permitting this subterfuge

include garbage collection, inspecting pointer values, and exploiting various

internal representations. Unfortunately, most people agree that making this

hack available to the user (and not restricting it to the processor) jeopard-

izes program stability, reliability, and portability, and is exactly the kind of

trick that strong typing is supposed to prevent. A high quality processor

will detect the trick (after all, it's an error) and disallow it.

11-2 The array Type

The importance of arrays in programming varies from language to language.

In APL, arrays— as the sole data type— are paramount. Similarly, in FOR-
TRAN, arrays are the only structured type. The Pascal programmer, in

contrast, requires less willing suspension of disbelief to form data structures

from data types. Since sets, records, linked data structures, etc., can all be

implemented transparently and conveniently through other building blocks,

arrays are relegated to a lesser role. The array is a data type, rather than

the data type.

In Pascal, the array type defines a structure that contains components,

or elements, of any simple, structured, or pointer type. The number of

components is fixed at compile-time by the number of constants of its
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index.
14 Arrays, like records (but unlike files) are random- access struc- about files 125-135

tures, because a component's position doesn't affect run-time overhead in

retrieving the data it stores. An array-type's BNF is:

array-type — 'array' 'P index-type {
',' index-type} '1' 'of component-type

.

index-type = ordinal-type

.

ordinal-type = new-ordinal-type
I
ordinal-type-identifier .

In chart form:

array-type

array—(—7
—^ordinal-type r— 1—M>f S**wP "

l n m r \ ^
C

}

y
) ^-^new-type '

The /wdlex- <v/» can be any ordinal type. But an important point about ordinal types 97-100

index-types is that they are, after all, types. When we say:

array [1..100] etc.

we are defining an ordinal subrange, and not merely naming the array's

bounds. Thus, the BNF of a subrange-type must be adhered to, and

expressions may not appear as subrange bounds.

subrange-type = constant'..' constant.

The component- type of an array may be any type, except the type of

the array itself! The component-type can be a previously defined type-

identifier, or a new-type described on the spot.

component-type = type-denoter

.

type-denoter = type- identifier] new-type .

The maximum number of components and index-types is not

specified by the Standard. Some example definitions and declarations are

(on the next page)

This also holds true for arrays declared as formal parameters.
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const

LineLength = 80;

PageLength = 66;

type

LetterCount — array [char] of 0.. 2000;

Page = packed array [I.. LineLength, 1.. PageLength] of char,

Board = array [1..8, 1..8] of record

Piece: (Pawn, Rook, Knight, Bishop,

Queen, King, Empty);

Owner: (Black, White, None)

end;

LargeSet = packed array [1.. 10000] of boolean;

Color = (Red, Blue, Green);

Palette = array [Color] of Color,

var

Verb, Noun: packed array [1..15] of char;

Sample, Standard: LetterCount;

Book: array [1..500] of Page;

Chess: Board;

Touched, Visited: LargeSet;

DisplayHues: Palette;

Notice that more than one index-type may be specified. An array

with n index-types is said to be n- dimensional. IS Technically, the

specification of additional index-types is a shorthand for a sequence of com-
ponent type-denoters. The definition:

array [char] of array [1..10] of array [Color] of real;

(where Color is an ordinal type) may be equivalently stated as any of:

array [char] of array [1..10, Color] of real;

array [char, 1.. 10] of array [Color] of real;

array [char, 1..10, Color] of real;

Although the four types described above are interchangeable, each one, in

effect, has a different sequence of components. The shorthand form is

about packing packed if each of the 'component sequence' forms is packed; similarly, if

101, 119-121 ^6 shorthand form is packed, then so are the component sequences. For

instance, these are equivalent descriptions of a single type:

packed array [1..10, 1.. 10] of char;

packed array [1..10] of packed array [1..10] of char;

Incidentally, two-dimensional arrays are generally implemented in row-major order— A[ij]

in Pascal is A\j,i] in FORTRAN.
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In contrast, the definitions below are different. Neither could be obtained

using a shorthand form:

array [1..10] of packed array [1..10] of char,

packed array [1..10] of array [1..10] of char,

assignment compatibility

10-11

string types 117-119

11-2.1 Arrays and Indexed-Variables

An array variable can be accessed in its entirety, or one component at a

time. Assignments may be made between any two array variables that are

assignment compatible. Usually, this means that they must be of the same

type— declared with the same type-denoter. However, string-type variables

(and constants) are assignment compatible as long as they have the same

number of components. The effect of an assignment between two array-

type variables is to assign the value of every component of one to its coun-

terpart in the other. Thus, if Touched and Visited are variables of type Lar-

geSet (as defined above), the assignment:

Touched : = Visited

is equivalent to the statement below (assuming the integer variable /).

Naturally, it is an error in either case if any component of the right-hand

array is undefined.

for /:= 1 to 10000

do Touchedii] := Visitedii]

Array variables, like record variables, are called component-variables, component-variables 70

An individual component of an array is denoted by an indexed- variable,

which consists of the array variable's name, and the subscript, or location,

of a particular component.

indexed-variable = array-variable 'P index-expression {
',' index-expression} ']'

.

array-variable = variable-access .

index-expression = expression .

Some typical array accesses are shown below. Note that an index-

expression may be computed.

for /:= 1 to 15 do read (Verb[i])\

Sample
['

A'] := 0;

Book[2\3] := Book[2\4];

Chess [ 1 ,4 ] . Piece : = Queen ;

Chess [1,2+2]. Owner : = White
;

DisplayHuesiRed) := Blue

The type of the index-expression must be assignment compatible with

the index-type. Nominally, this means that the index-expression must fall

within the closed interval of the index-type. A careful reading of the
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assignment compatibility rules, though, reveals that it is an error, rather

than a violation, for the index-expression's value to fall outside the proper

range (as long as it still has the proper host type). Error status is granted to

range errors because the value of the index-expression can't always be

determined at compile-time. However, it is not likely that a processor will

fail to detect such an error— and cease program execution— at run-time. 16

The program fragment below shows the classic situation for generating

range errors. Assume that we are searching through TheArray for the com-

ponent that contains SoughtNumber.

var TheArray: array [1..20] of integer;

i, SoughtNumber: integer;

/:= l;

while (/ <= 20) and ( TheArray [i] <> SoughtNumber)

do /:= /+ 1

Suppose that SoughtNumber is never found. On the last loop iteration the

expression (/<=20) will be false, which means that the while will not be

entered again. Unfortunately, boolean expressions in Pascal may be fully

full evaluation 39-40 evaluated. When a fully-evaluating processor attempts to deal with

( TheArray [i]<> SoughtNumber), a range error will occur, and the program

may halt if it is detected.

Arrays of arrays require a special mention. Suppose that we make
these definitions and declarations: 17

type Vector = array [1..10] of integer;

Matrix = array [
— 5.. 5] of Vector;

var Slot: Vector;

Grid: Matrix;

The smallest indivisible component of Grid is a variable of type integer,

which we can refer to like this:

Grid [0] [5]

For convenience, an abbreviated form can be used, in which '] [' is

replaced by ','. This indexed-variable refers to the same component.

Grid [0,5]

The substitution may be made whenever an array variable is itself an

indexed-variable.

Some processors, however, do have a runtime-checks-off mode. If this mode is the de-

fault, watch out.
1

7

The two-step definition lets us declare variables— including parameters—of type Vector. If

Matrix were simply defined as two-dimensional array, it would be impossible to make assign-

ments to its one-dimensional components— they have anonymous types, and are only assign-

ment compatible with each other.
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We can also access any of the array- type components of Grid. For

example:

Grid [3] := Slot

Note that the possibilities for 'slicing' a two-dimensional array are limited

by the array's definition. In the assignment above, Grid[3] is a variable of

type Vector. There is no way we could 'slice' Grid along its second dimen-

sion instead.

11-2.2 String Types

Sequences of char values, or strings, are grudgingly admitted as a type in

Pascal. 18 String-type values are unusual for three reasons:

1) Their assignment compatibility is determined by structure.

2) String constants are the only structured constants.

3) String-type variables (or constants) may be output to textfiles in their

entirety.

A constant of a string-type is called a character-string. It is a sequence character strings 6

of characters (the string's components) between single quote marks, with

the exception that a character-string only one character long denotes a

char-type value:

character-string
= '''

string-element { string-element}
'''

.

string-element = apostrophe-image
I
string-character .

apostrophe-image = '
"

' .

string-character = one-of-a-set-of-implementation-defined-characters .

Recall that an apostrophe-image, or doubled single-quote, lets a single-quote

mark be included in a string. Strings may be defined as constants:

const Name = 'Patti';

Blanks = ';

By definition, a packed array whose component type is char is a

string-type if its index-type is an integer subrange that begins with 1, and

has a length of 2 or more. For example:

Length = 1.10;

alpha = packed array [Length] of char;

beta = packed array [1..10] of char;

Name = array [1..3] of alpha; {Name 's components are strings.}

18
Nevertheless, there is no required type-identifier 'String.' One of the main differences

between UCSD Pascal and Standard Pascal is that the former includes standard string types

and a number of mechanisms for dealing with them. The addition of such string extensions

to Standard Pascal was intensely debated, but was rejected. It has, however, been proposed as

a 'standard' extension.
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Some illegal examples are:

(illegal examples}

ReallyChar = packed array [1..1] of char, {too short}

BadWord = array [1..10] of char, {not packed}

NotAString = packed array [0..20] of char, {index-type must begin with 1.}

NotAStringType = packed array [1..10] of A'.'Z'; {component type must

denote char.}

Two string types are assignment compatible (and also compatible) if

they both have the same number of components. Thus, variables of types

alpha and beta are assignment compatible. Assuming alpha variable Good
and beta variable Bad these are legal assignments:

Good:— 'Programmer';

Bad: = 'Hacks ';

Good:= Bad

Notice that it is necessary to pad the string 'Hacks' with five blanks to

make it assignment compatible with Bad.

The relational operators are defined for string operands, and yield

boolean results.
19 String values are compared according to their lexico-

graphic ordering. Formally, if Stringl and String2 are compatible string-

types, then:

1) Stringl equals String2 if, and only if, for all i in [l..n],

Stringl [ i] = String2 [ i]

.

2) Stringl is less than String2 if, and only if, there exists a p in [l..«]

such that for all / in [\..p— 1], Stringl[i] equals String2[i], and also,

Stringl [p] is less than String2[p].

The ordering of any two characters is determined by their ordinal

values in the required type char. As a result, although the expression

'cat'
<

'dog' will always be true, the value of the expression 'cat' < 'CAT'

(to say nothing of '22cats' <'cats22') will vary between processors.

Strings may be output to textfiles using write and writeln. Exact

specifications of output fields are given in section 5-2. A particularly handy

application of this feature simulates the output of enumerated ordinal type

constants. For example:

type WeekDays = {Monday, Tuesday, Wednesday, Thursday, Friday);

Words = packed array [1..9] of char;

WeekDayStrings = packed array [ WeekDays] of Words;

var Today: WeekDays;

DayName: WeekDayStrings;

19
The Standard states that when a value of a string type (in this case., a variable or defined

constant) is compared to a character-string, their components are compared from left to right.
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After suitably initializing DayName:

DayName [Monday) := 'Monday ';

DayName[Tuesday] := 'Tuesday ';

DayName [Friday] := 'Friday

we can print the current value of Today with:

writeln ('Today is ', DayName [Today])

11-2.3 The Transfer Procedures pack and unpack

Although any structured type may be designated packed, the feature is usu- packing 101, 119-121

ally taken advantage of in the definition of array types. One motivation lies

in the privileges associated with string-types, as discussed above. However,

an exceptionally stupid processor may not recognize that these two arrays:

array [1.. 10000] of real

array [1.. 10000] of boolean

have vastly different storage requirements. Packing the second is intended

to minimize the space allotted to it, although it may increase the time re-

quired to access a single component.

Designating an array as packed has no effect on its components if they

are structured. The components of:

packed array [Number) of Components

will only be packed if Components has itself been defined as a packed struc-

tured type. If Components is, in fact, packed, then these array descriptions

are equivalent:

packed array [Quantity, Count] of Components

packed array [Quantity] of packed array [Count] of Components

Although designating an array as packed can make it expensive to ac-

cess individual array components, the programmer is not necessarily forced

to sacrifice speed for space. The array can be unpacked, and its com-
ponents assigned to a variable of a similar— but not packed— array type.

After its components are inspected or modified as necessary, the original ar-

ray may be repacked. The required transfer procedures unpack and pack do

the job. 20 Suppose we make these assumptions:

1) Vunpacked is a variable whose type can be stated as: array [Tl] of

Components.

20 We assume that, beyond some cutoff point, the entire array can be unpacked, and then

repacked, more efficiently than individual components; and that unpack and pack are imple-

mented in this efficient manner.
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2) Vpacked is a variable with the same component type, but possibly a

different (perhaps smaller) index-type: packed array [T2] of Com-

ponents.

3) The smallest and largest values of T2 are Lower and Upper.

4) Variable k has type 77.

5) Variable j has type 72.

6) StartingSubscript is an expression whose value is assignment compati-

ble with 77.

The procedure call unpack (Vpacked, Vunpacked, StartingSubscript), as

defined in terms of other statements, means:

begin

k : = StartingSubscript;

for j : = Lower to Upper

do begin

Vunpackedik] := Vpacked\j\;

if j< > Upper then k : = succ ( A:)

end

end

unpack attempts to assign every component of Vpacked to a counter-

part in Vunpacked, starting with Vunpacked[StartingSubscript]. In conse-

quence, it is an error for any component of Vpacked to be undefined. If

Vunpacked runs out of room, the program will almost undoubtedly halt

when it detects the erroneous assignment:

k : = succ ( k)

host types 99 Note that Tl and T2 may have different host types. 21

Procedure pack reverses the process. The call pack (Vunpacked, Star-

tingSubscript, Vpacked), as defined in terms of other statements, is

equivalent to:

begin

k : = StartingSubscript;

for j : = Lower to Upper

do begin

Vpackedlj] := Vunpacked[k];

ifj<> Upper then k:= succ(k)

end

end

As above, if we attempt to unpack a segment of Vunpacked that is smaller

than Vpacked, a run-time error will occur because of the assignment:

Such subtleties were not specified by [J&W], which implied that Tl and T2 had to be in-

teger subranges.
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k: = succ(k)

It is also an error to try to access any undefined component of Vunpacked.

In summary, packed arrays must be packed and unpacked in their

entirety. A packed array may be unpacked into, or packed from, any con-

tiguous section of an unpacked array. It is an error if this section holds

fewer components than the packed array. String constants cannot appear in

calls of either pack or unpack.

11-3 The set Type

Pascal's set types allow the declaration of variables that can represent a set,

or group, of values of any ordinal type.
22 The BNF of a set type is:

set- type = 'set' 'of base- type .

base-type = ordinal-type .

In chart form:

set- type

set-
irdinal- type- identifier

-new-ordinal-type

For example:

type Characters = set of char,

Things = (a,b,c);

ThingSet = set of Things;

Seasons = set of (Spring, Summer, Fall, Winter);

var Year: Seasons;

Included, Excluded: Characters;

SmallPrimes, TrialNumbers: packed set of 1..29;

Conditions: set of (Testing, Running, ErrorFree, Ready, Active);

The size of allowable set types is implementation-defined, and there is

no required minimum value. Historically the maximum set size has been

equal to the implementation's word size— which frequently made the type

set of char illegal— but many current implementations allow vastly larger

sets.
23

22
Pascal's sets are said to have members, in contrast to the components of the other structured

types (and also, unfortunately, in contrast to the elements of real-life sets).

At this writing, I believe the winner is the Storage Technology implementation, which con-

strains set definitions by the size of available memory. Famous losers (which don't allow the

type set of char) are too numerous to mention. There was, incidentally, a good deal of wran-

gling over this issue, and a very early draft of the Standard did require set of char.
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Formally, a set type defines the powerset of an ordinal type, called the

set's base type. Even though a base type may contain many subsets, every

subset (including the empty set) has the powerset's type. The total number

of subsets is called the cardinality of the powerset. If the base type of any

set type has b values, then the cardinality of its powerset is 2 to the b

power. 24

11-3.1 Set Constructors

The constants of set types are denoted by set- constructors. Like set-type

factor 41-42 variables, set-constructors are factors, and may be used to build longer set-

type expressions. A set-constructor is a list of set members given between

square brackets:

set-constructor — ' P [ member-designator [
' ,' member-designator }]']'.

member-designator = expression {
'

.

.

' expression } .

ordinal types 97-100 A member-designator is either a value of an ordinal type, or two such

values (separated by a '..') that designates the range the two values delimit.

Some example set-constructors are:

[] [Spring] [Spring.. Winter] [V..V, 'A'..'Z']

[1,3,5,7,9] [1,3. .5, 10..15] [';',', ','.',':'] [sqrO)+5]

The empty set, shown by an empty pair of square brackets: [ ], is a

constant of every set type. The empty set is also designated by an empty

closed interval; e.g., [3..1]. Note that [3..1] (whose type is explicitly given

by the expression it contains) isn't necessarily equivalent to [ ] (whose type

is determined by context). Thus, given the declaration:

var Letters: set of char,

this assignment is legal:

Letters : = [ ]

but the assignment below is illegal:

Letters := [3..1]

Now, how is the type of a set-constructor or other set-type expression

determined? In Pascal, every expression of a set type is said to be a value

of the canonical set- of- T, where T is an ordinal type. Consequently,

expressions like [1,2,3] and [3..1] are values of the canonical set of integer.

The canonical set is a device that is helpful in other descriptions of set

expressions.

For example, since the base-type of ThingSet (Things) has three values, we expect, and

find, eight (2
3
) possible set-values of type ThingSet:

[} [a] [b] [c] [a,bl [a,c] [b,c] [a,b,c]
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11-3.2 Set Assignments and Expressions

Some sample assignments to set-type variables are:

Year : = [ Spring. . Winter ] ;

Included. = ['a'..'z'];

Excluded. = Included;

SmallPrimes :—
[ ];

Conditions : = [ Testing, Ready]

For the purposes of compatibility, the set types are treated similarly to

strings and ordinal types, in the sense that values are inspected more

closely than type names. Two set types 77 and T2 are compatible if:

1) They have compatible base- types; 25 and

2) either both are packed types, or neither is packed.

A set value of type Tl is assignment compatible with a type T2 if:

1) They are compatible set types, and all the members of the value of

type 72 are also members of the base type of 77; except that

2) it is an error if 77 and T2 are compatible, but a member of the value

of type T2 is not in the base type of 77. 26

A set-valued expression must be assignment compatible with the set-type

variable it is being assigned to. A set-valued actual parameter must be

compatible with its formal parameter. Regardless of their base types, two

sets cannot be assignment compatible if one is packed and the other is not.

11-3 3 Expressions That Use Sets

As data structures, sets are easy to implement with arrays: the type

definition array [Season] of boolean defines a structure that can be allo-

cated as cheaply and easily as the set type set of Season.

However, the operators associated with set operands can make sets

the data type of choice. The operators are:

Set Operators

Operator Name Precedence Category

* set intersection multiplying-operator

+ set union adding-operator
—

set difference adding-operator

In all cases, both operands must have the same canonical set-of- T type, and

either both or neither must be packed. The result has the same canonical

25 The base types are compatible if 77 is a subrange of T2, or vice versa, or both are

subranges of the same host type.

It's an error, rather than a violation, solely because a check cannot necessarily be made
until run-time. It's the kind of error that almost every processor will detect, and halt for.
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set-of- T type as the operands. The intersection of sets a and b (a*b) is the

set whose members are currently in both a and b. The union of the same

sets (a +b) is the set of members formed by merging a and b. Finally,

the difference of the sets (a —b) is the set of a's members that are not also

in b.

[1..5, 7] * [4, 6, 8] is [4]

[1..5, 7] + [4, 6, 8] is [1..8]

[1..5, 7] - [4, 6, 8] is [1..3, 5, 7]

Several relational operators may also be applied to set operand (s), and

yield boolean-va\u&d results. Again, either both operands or neither must

be packed.

Relational Operators

erator Name Precedence Category

= set equality relational-operator

<> set inequality
»»

<= 'included in'
5)

>= 'includes'
>i

in set inclusion
5i

For all operators besides in, both operands must have the same
canonical set-of- T type.

1) a=b is true if all members of both a and b are identical.

2) a<> b is true if any member of a cannot be found in b, or vice

versa.

3) a<=b is true if every member of a is also a member of b.

4) a>=b is true if every member of b is found in a.

5) V in S is true if the ordinal value V is a member of set S.

The final relational operator, in , requires a left operand of any ordinal type

77, and a right operand of the canonical set-of- 77.

Set expressions usually provide a clean, obvious, and efficient method
of stating relationships. For example:

if SpecialSymbolin [';', ':', ',', '.']

then HandlePunctuation etc.

repeat

until ([Running, Ready] <= Conditions) etc.

Naturally, they also describe sets of data:
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program FindMissingLetters {input, output);

{Finds capital letters not included in a text sample.}

type CharacterSet = set of char,

var Current: char;

MissingLetters: CharacterSet;

begin

MissingLetters := ['

A
'. .' Z']

;

while not eof

do begin

read {Current);

MissingLetters : = MissingLetters— [ Current]

end;

for Current. = 'A' to 'Z'

do if Current in MissingLetters then write {Current);

writeln

end.

11-4 The file Type

The structured types described so far have shared an important

restriction— the number (as well as the type) of components each structure

holds has been part of its definition. File types, in contrast, are not limited

to storing any particular number of components. The 'size' of a file-type

variable may change during program execution.

A second crucial difference between files and all other types is that

file-type variables may exist independently of any program. This means
that:

1) Programs can access external data files that were allocated before pro-

gram execution.

2) Programs can make storage allocations that persist after program exe-

cution.

The BNF of the file type is:

file- type = 'file' 'of component-type .

component- type = type-denoter .

file-type

type-identifier-
file^ of C l̂ -lutmuitr—\

^-fc* new- type /new- type

The components of a file may belong to any simple, structured, or

pointer type, with these exceptions:
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1) File components may not be file types themselves.

2) File components can't be structured types that contain file-type com-

ponents.

Some legal definitions and declarations are:

type Date — file of real;

DataFile = file of array [1..10] of integer,

Lines = array [1..10] of file of char;

Employees = file of record

description of recordfields

end;

var Calendar: Date;

Vectors: DataFile;

Course: Lines;

Payroll: Employees;

Newlnput: text;

text 131 The required identifier text denotes a predefined type similar to file of char,

and is discussed later on. An illegal definition is:

{illegal definition}

PersonData — array [{Job, Family, Study)] of text;

SuperFile = file of PersonData; {PersonData has file components.}

Unlike all other variables, which may be inspected or modified at any

time, active file variables must be in one of two states: either being

generated—written to— or inspected— read from. A file may not be in both

states at once. Another restriction is that files may not be the actual param-

variabie-parameters 81-83 eters of value-parameters. 27 They must be passed to variable-parameters

instead.

Files are sequential- access structures, in contrast to random-access

structures like records and arrays. When a file is being generated, new
components are always added to the file's end. A file that is being

inspected must be searched in the order that its components were added.

The search for an individual file component must start at the file's begin-

ning, and go all the way through, component by component, until the

sought component is found.

File variables are atypical for Pascal because of the extent to which

they reflect underlying computer systems. Space for file variables is often

allocated on comparatively slow secondary storage devices (which, for all

practical purposes, enables files to grow without limit). To avoid slowing

down the processor (by requiring it to deal with these devices) implementa-

tions generally allocate intermediate buffers that are large enough for

efficient update of, or by, secondary storage.

A value-parameter's actual parameter must be assignment compatible with it, and file-types

are never assignment compatible. See section 2-1.
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Since secondary storage devices and intermediate buffers are wholly

dependent on implementation, Pascal deals with files consistently by intro-

ducing a buffer variable that represents a single file component. The buffer

variable is automatically allocated in conjunction with a file variable's

declaration; every file has a buffer variable associated with it. It is denoted

by the file-variable's name and an up-arrow or circumflex. 28

buffer-variable = file-variable 'f .

file-variable — variable-access

.

The buffer variable acts as a window that contains (or more accu-

rately, can allow access of) the 'current' file component. In effect, the pro-

grammer manipulates a file's buffer variable (possibly using procedures get

or put) to inspect or add to the file itself. The exact point at which changes get, put 128

in a buffer variable are reflected in secondary storage is implementation-

defined (which lets implementors take advantage of the aforementioned

intermediate buffers). It is an error to change the value of a file when a

reference to its buffer exists.

Since a file variable's components are anonymous (they don't have

individual identifiers) the buffer variable serves as the name of the

currently accessible file component. As a result, the buffer variable's type

is the component-type of the file. For a file of type text, the buffer variable

has type char. Some typical accesses are:

Calendar \ := 1.30;

writeIn i Calendar ]

)

;

for /:= 1 to 10 do Vectors \[i) := 0;

Cowr5e[l]| := 'H';

Payroll } . Field : = Info ;

read iNewInput})

11-4.1 The File Handling Procedures

When a file variable is first declared, it is undefined— neither in the state of

inspection nor generation—and its buffer variable is totally undefined. Four

required procedures are sufficient to put the file into an active state, and

then manipulate the file's buffer variable to inspect or alter the file.

rewrite if) The procedure statement rewrite if) puts file /in the generation

state. Any current contents are lost— the file becomes empty

(but defined), while the buffer variable f] becomes totally

undefined.

reset if) The procedure statement reset if) puts file / in the inspection

state. It is an error if / is undefined before the call of reset;

however, / may have been empty. After the call of reset, the

28
I'll always use the up-arrow (an ISO national variant) because it's more readable in this

typeface.
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buffer variable f] represents the first file component, except that

if the file is empty, the buffer variable is totally undefined.

textfiies 131-134 In the special case of /as a textfile, resetif) requires, if /is nonempty, that

its last component be an end-of-line. Thus, a textfile may not contain a

partial last line; in effect, a call of reset adds an end-of-line component if

necessary.

put (J) The procedure statement put if) appends the buffer variable f]
to file / It is an error if / isn't being generated, if f] is

undefined, or if f] isn't put on the end of the file. After the

put, the buffer variable becomes totally undefined, but the file

stays in the 'generation' state. Note that the buffer variable's

current value is not added to a file until it has been put there.

get if) The procedure statement get if) causes the buffer variable f] to

represent file f's next component. It is an error if the file is not

in the inspection state, or if there isn't any 'next' component;

i.e. if eofif), discussed below, is true. If the second error

occurs, the buffer variable becomes totally undefined.

We can see that avoiding some errors requires knowledge about

whether a file is empty to begin with, or whether the buffer variable

currently represents the file's last component. A boolean end- of-file func-

tion provides this knowledge.

eofif) The function call eofif) yields the value true if the file is empty

beyond the component that/t currently represents or if/ is empty.

It is an error to call eofif) if/ is undefined.

If the function is called without an actual parameter list (e.g. eof), it

input 131-132 applies to the required textfile input. An additional file-oriented function

eoin 38, 133 called eoln applies only to textfiies, and is discussed later.

The program fragment below demonstrates a common model of file

usage. Note that there is an implicit call of getiData) when Data is reset.

{Inspect and modify components of Data (with procedure

Process), and store the modified components in Results.}

var Data, Results: file of FileComponent;

OneComponent: FileComponent;

reset iData); {prepare to inspect Data]

rewrite iResults); {prepare to generate Results)

while not eofiData)

do begin

Process iData] , OneComponent);

Results] := OneComponent; {define the Results buffer variable}

put iResults); {append Results] to Results}

get iData) {advance the buffer variable Data]}

end
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It's important to realize that this alternative formulation:

reset (Data);

rewrite (Results);

repeat

Process (Data], OneComponent);

Results] := OneComponent;

put (Results);

get (Data)

until eof(Data)

is incorrect if Data is an empty file. The access of its buffer variable will be

an error, as will the attempted get.

11-4.2 read and write

Although procedures get and put are sufficient for inspecting or updating

individual file components, they are not necessarily convenient. In prac-

tice, one usually advances the buffer variable immediately after inspecting

or assigning it. For instance, if data items are considered to belong in tri-

ples, then one of the following fragments is needed to assign (or record) a

given triple to (or from) variables VI, V2, and V3.

(Get VI, V2, V3) {Save VI, V2, V3)

reset (Data); rewrite (Results);

VI := Data]; Results] := VI;

get(Data); put(Results);

V2: = Data]; Results] := V2;

get(Data); put(Results);

V3:=Data]; Results] : = V3;

get (Data) put (Results)

The required procedures read and write simplify this job by combining

the two steps, like this:
29

{Get VI, V2, V3\ {Save VI, V2, V3)

reset (Data); rewrite (Results);

read (Data, VI, V2, V3) write (Results, VI, V2, V3)

There is a dual advantage to using read and write: the primitive operations

get and put are concealed, as is any monkeying around with the file buffer

variable.

The procedure call read(f,V), where / is a file variable and V is a

variable-access, establishes a reference to / for the remainder of the variable-access 70

statement's execution.

29
In the following discussion, we assume that file / is not a textfile. read and write are

defined slightly differently for textfiles; also, two additional procedures (readln and writeln) are

predefined for textfiles.
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read (f,V) is equivalent to begin V: = f\; get if) end

Note that the file buffer now serves as a lookahead variable. It contains the

component that will be assigned in the process of the next read.

The procedure call write if,E) , where / is a file variable and E is an

expression, also establishes a reference to /for the rest of the call.

write (f,E) is equivalent to begin f\ : = E; put if) end

In both cases, the file / may be of any type, which either extends or

clarifies [J&W], which seemed to allow only textfiles.

Both read and write allow multiple arguments, and imply a repeated

sequence of assignments and calls. The call readif VI, • • •
, Vn) is

equivalent to the sequence:

begin readif, VI); ••
; readif, Vn) end

Similarly, write if, El, •••
, En) is equivalent to the sequence:

begin write if, El); •••
; write if, En) end

Once again, for both read and write, a single reference to file / exists

through the entire procedure call. For example, suppose we make this

declaration:

var A : array [1..10] of file of integer;

i, a, b: integer;

During the whole peculiar call of read shown below, only a single com-

ponent of A will be accessed.

read iA[i], i, a, i, b)

Incidentally, all assertions about, and implementation-defined aspects

of, the procedures get and put apply, since for all practical purposes they

are used by read and write. In a call of read that applies to a file /, it's an

error if each value obtained isn't assignment compatible with /'s buffer

variable, or if the buffer variable is undefined immediately before the call.

Similarly, in a call of write, it's an error if the type of any expression being

written isn't assignment compatible with the file's buffer.

11-4.3 External Files: Program Parameters

An external file exists independently of any program activation. It may
contain input data, or be a depository for program results. Such files are

named in the program's heading as program parameters.

program-heading — 'program' identifier [
'(' program-parameters

1')''
] .

program-parameters = identifier-list

.

identifier-list — identifier {
' ,' identifier } .

130



The file Type 11-4

If an identifier (besides input or output) appears as a program parame-

ter, it must have a defining point as a variable-identifier for the region of defining points 59-60

the program block. (In English, this means that it must be declared as a

variable in the main program.) Technically, the identifiers are not required

to be declared as files— if they aren't, their binding to external entities is

implementation-dependent. 30 If they are declared as files, which is the

usual case, then their binding is implementation-defined. All program

parameter identifiers must be distinct.

After appearing in the program heading, external files are declared

and treated just like ordinary file types. Program Duplicate, below, copies

the contents of file Old into file New.

program Duplicate (Old, New);

(Copy file Old to the external file New}

type DataType = (Definition of DataType.)

var Old, New: file of DataType;

Temp: DataType;

begin

reset (Old);

rewrite (New);

while not eof(Old)

do begin

read (Old, Temp);

write (New, Temp)

end

end.

11-4.4 Textfiles

The required file-type text is the only predefined structured type. Files of

type text are called textfiles. Type text is superficially like the type file of

char, in that it defines a file type with char components. 31 All required

procedures and functions that are applicable to variables with type file of

char may also be applied to textfiles. However, additional procedures and

functions are required (readln, writeln, page, and eoln) that may only be

used with textfiles.

The most important textfiles are input and output, which are both

predefined, input and output generally represent the processor's standard

input/output mechanism— the input 'file' may be a keyboard or card reader,

while output is usually a CRT screen or lineprinter.

Typically, this will allow particular I/O devices to be named as program parameters.

The two types were identical in [J&W].
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1) Although either must appear as a program parameter if used within a

program, neither input nor output may have a further defining point

within the program block.

2) If either appears as a program parameter, an implicit call of

reseti input) or rewrite {output) is made before the first access of either

the textfile, or its buffer variable. 32

3) The effect of any further call of procedures reset and rewrite, as

applied to input or output, is implementation-defined.

Textfiles, like files in general, are structured in the sense that they are

sequences of components— in this case, of char values. However, textfiles

I/O devices 47 are also divided into lines, to help the line-orientation of most I/O devices

and textfile applications. A special value called the end- of- line component

marks the end of every line (including the last line) of every textfile.

Although the end-of-line is required to be indistinguishable from a blank

space (except as perceived by eoln, readln, and reset), its actual representa-

tion is implementation-dependent. 33

Three required procedures, and one required function, are predefined

to enable certain textfile prerogatives. In all cases below, the file /must be

a textfile.

writelnif) The procedure call writelnif) appends an end-of-line to file /
(terminating any partial line being produced with write). It is an

error if / is undefined. After the call, f\ is totally undefined,

and / remains in the 'generation' state. Note that a line may
consist solely of the end-of-line. writeln applies to output if no

file is named. 34

readlnif) The procedure call readlnif) positions the file buffer variable

just past the current line's end-of-line— at the first character of

the next line. In effect, it skips over the current line. Applies

to input if no file is named. The call readlnif) is equivalent to:

begin while not eolnif) do getif); getif) end

which makes it an error to call readlnif) if eofif) is true.

page if) The procedure call page if) is equivalent to writelnif) except

that it also has an implementation-defined effect— further text

written to / will appear on a new physical page if the textfile is

[J&W] implied that the reset of file input had to occur before program statement execu-

tion, which meant (in interactive systems) that actual input had to begin before it was prompt-

ed for! Under the present standard, the implicit geti input) is usually delayed until the first

read or readln. (This is traditionally known as lazy I/O.)

Typically, the end-of-line is one or more control characters (like the line feed and carriage

return characters). However, some systems treat each line as a record with an associated

'length' value— physically, there is no end-of-line component.

An implicit call of writeln may be made prior to program termination for every textfile be-

ing generated, since the predefined procedure reset requires every nonempty textfile to end

with an end-of-line.
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being printed on a suitable output device. 35 However, page is

not required to modify the file, because the effect of inspecting a

textfile to which page has been applied is implementation-

dependent, page applies to output if no file is named.

eolnif) The function call eolnif) is true if the buffer variable f\ is the

end-of-line. It is an error if / is undefined, or if eofif) is true,

eoln applies to input if no file is named.

Although the file primitives get and put may be applied to textfiles,

procedures read, write, readln and writeln are generally used instead. When
applied to textfiles, the latter four procedures share an attractive feature—
they automatically coerce a sequence of char values to integer or real (for

read and readln) or vice versa (for write and writeln) .

36 I/O coercion 48, 50

When applied to textfiles, the parameter lists of read, readln, write,

and writeln have specific BNFs:

write-parameter-list = '
[ file-variable ','

] write-parameter {
',' write-parameter) ')'

.

writeln-parameter-list » [*(' ( file-variable\ write-parameter) {
',' write-parameter) ')'

] .

write-parameter = expression [
' :' expression [

' :' expression ] ] .

read-parameter- list
='(' [file-variable'',' ] variable-access {

',' variable-access} ')'
.

readln-parameter-list — [*C ( file-variable\ variable-access) {
',' variable-access) ')'

] .

A variable-access, as used in the BNF of a read- or readln-parameter-

list, is not a variable-parameter. As a result, it may be a component of a

packed structure, and the buffer variable's value need only be assignment packing 101, 119-121

compatible with it.

If the file-variable argument of w/te or writeln is omitted, the pro-

cedure applies to the required textfile output. Similarly, if the file-variable

argument of read or readln is omitted, the procedure applies to the

required textfile input.

The exact meaning of the write-parameter syntax was discussed in

detail in section 5-2; it suffices for now to say that it allows the printing of

char, real, integer, and boolean values, as well as specification of field width,

or floating/fixed-point representation. The call writelnif, El, ••
, En) is

equivalent to:

begin writeif, El, • •
, En); writeln (/) end

A statement of the form readlnif, VI, ••
, Vn) is equivalent to:

begin readif, VI,"', Vn); readlnif) end

In consequence, it is easy, deliberately or inadvertently, to discard data that

remains on an input line.

If there is no partial line, there is no implicit writeln.

Note that the buffer variable of a textfile is always of type char. It's generally reserved for

use as a lookahead.
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The effect of write (f,E) on interactive files is a matter for special con-

sideration. Although the call is equivalent to:

begin /| := E\ put(f) end

the observant reader will remember that the exact time a put is reflected in

the physical file is implementation-defined. In some implementations the

put takes place immediately; others delay a sequence of puts until an arbi-

trary output buffer is filled; others buffer puts until a read or readln is

encountered; still others buffer puts until procedure writeln (or page) is

called. Since a writeln almost invariably acts as a line-feed, this means that

interactive applications programmers may not be able to position a cursor or

print head at the end of a line of output.

11-4.5 Comments

The precise definition of file types has brought grief to programmers and

implementors from the beginning. In a 1975 paper that reviewed his

experience with Pascal, Wirth titled one section
lAn Important Concept and a

Persistent Source ofProblems: Files,'' and admitted that:

'...some inherent difficulties became evident only after extended usage.'

[Wirth75]

The roots of the problem lie in the poorly understood relationship

between programs and I/O devices in general. These devices are not easily

abstracted as data types; a cantankerous lineprinter can make a mess of a

well-pedigreed file abstraction. As a result, Pascal's file types labor under a

double burden. They're intended to describe not only malleable locations

in memory, but actual storage devices as well. Unfortunately, what appears

to be a fine solution for a certain class of devices may fail miserably for

others.

The best example involves the widely documented problem of imple-

menting interactive Pascal programs according to [J&W]. The original Pas-

cal implementation was a compiler for the CDC 6000 series of batch-

oriented computers. Now, if batch programs have one distinguishing

feature, it is that all data associated with the required file input is available

at the start of program execution. As a result, the initializing call

reset (input) can be performed without difficulty— there is a component

available for the buffer variable.

Interactive files are less amenable to being reset. A typical program

begins:

begin

writeln ('Enter data');

readln (Data);

etc.
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Under [J&W] the user was required to enter at least one character before

the prompt. Since this was obviously impractical, a host of 'solutions'

appeared in the pages of SIGPLAN Notices and other journals. Proposals

(which, in general, were actually implemented— with horrible results for

program portability) included initializing input] to end-of-line, creating a

new class of interactive files, adding new required functions, and the ulti-

mate winner, lazy I/O. lazy I/O 132

I mention this only to illustrate the basic law of Standards— if it doesn't

work, it won 't stay standard very long.
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Pointer Types

A variable of a pointer type is used to reference, or indirectly access, a vari-

able of the pointer's domain- type .

pointer-type = new-pointer-type
I
pointer-type-identifier .

new-pointer-type — *f domain-type,

domain-type = type- identifier .

Either a circumflex or up-arrow (an ISO national variant) can be used in

conjunction with pointer types and variables. I use the up-arrow because

it's more readable in print.

For all practical purposes, a pointer-type can't be defined within the

definition of its domain-type. However, a pointer type may be defined in

advance of its domain-type, as long as the domain-type is defined in the

same type definition part. Some legal definitions and declarations are:

type IntegerPointer = f integer,

NodePointer = \Node;

Node = record

Data: integer,

Lchild, Rchild: NodePointer

end;

MoreBuckets =
f Buckets;

Buckets = record

" •
. {details of data fields}

Overflow: MoreBuckets

end;

HashTable = array [1..100] of MoreBuckets;

TypeOfGarbage = (IntPtr, NodePtr, MorBkts);

AdditionalGarbage —
\ Garbage;

Garbage — record

MoreGarbage : A dditionalGarbage;

case TypeOfGarbage of

IntPtr: (NewIntPtr: IntegerPointer);

NodePtr: (NewNodePtr: NodePointer);

MorBkts: (NewMorBkts: MoreBuckets)

end;

var Head, Tail, Current, Auxiliary: NodePointer;

Symbols: HashTable;

NewSymbol: MoreBuckets;

Free: AdditionalGarbage;

136



Pointer Variables 12-1

Certain self-referencing definitions are legal:

type 77 = array [1..100] of ] 77;

T2 =
| 72;

but are so peculiar that it is doubtful if they are ever made. Another legal,

but unlikely, definition is:

type Element = record

Info: char,

Newer: ] Element

end;

Although the definition of Element is legal, field Newer has an anonymous

type. This means that it's impossible to declare an auxiliary pointer vari-

able or function with the same type as Newer.

12-1 Pointer Variables

Any discussion of pointer variables must first distinguish between the

pointer, and the variable referenced by the pointer. A pointer variable can

be initialized or modified in one of three ways:

1) It can be assigned the nil- value, which is denoted by the token nil.

A nil-pointer does not reference a variable.

2)

3)

It can be given a unique identifying- value, which serves as the address

of a variable of the pointer's domain-type.

It can be assigned the value of another pointer of the same type.

Either it will become nil, or it will acquire the same identifying-

value— and thus reference the same variable— as the other pointer.

The nil-value is kind of peculiar. First, although it denotes a value,

nil is a token, and not an identifier. This means that nil may not be

redefined. Second, the exact type of nil depends on its context. In the

same way that the empty set ([]) is a member of every set type, nil is

effectively a member of every pointer type.

Under no legal circumstances can the value of a pointer be printed, used

in an arithmetic expression, or otherwise inspected. Pointers of compatible

types (i.e., with the same type) may, however, be compared to each other or to

nil with the relational operators '=' and '<>'.

A pointer is given a unique identifying value by using the required

procedure new to dynamically allocate a new variable.

new (p) The procedure call new (p), where p is a variable-access of any

pointer type, creates a totally undefined variable of p's domain
type, p is said to reference this variable.

tokens 3-6

empty sets 122

relational operators 45-46
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The new variable is unusual because it is anonymous, and is dynami-

cally allocated. It remains allocated for the duration of program execution,

even if it's created within a subprogram. ' As a result, if it is necessary to

reclaim the storage used by a referenced variable, another procedure call is

required. The action that is absolutely required of dispose is limited:

dispose (q) The procedure call dispose (q), where q is a variable or func-

tion of any pointer type, serves to disassociate the variable

referenced by q from any pointer. 2
It is an error to dispose of a

variable that is currently being accessed, or to attempt to

dispose of an undefined or nil-valued pointer.

The first dispose error might occur in a situation like this:

{illegal example}

with p\ do begin

dispose (p) {This call is illegal because p is being accessed.}

end

In most implementations a call of dispose (q) is assumed to free the

memory occupied by the variable referenced by q. Whether or not this

memory is actually released, it becomes an error to attempt to access the

variable through q, or through any other pointer (since they have become
undefined). Error status here is intended to resolve the problem of 'dan-

gling' references to dynamically allocated variables. 3

The effect of new and dispose in regard to records with variants is dis-

cussed later in this section. Some examples of ordinary assignments, allo-

cations, and disposals are:

Head:= nil;

Tail:— nil;

new (Current);

Tail: = Current;

dispose ( Tail); [Current and Tail are both undefined now.}

for /:= 1 to 100 do new(Symbols[i\)

However, a locally declared variable (i.e., one that is not dynamically allocated) that happens

to have a pointer type is allocated and deallocated just like any other local variable.

This is truly one of the most obscure entries in the Standard, which says that the call 'shall

remove the identifying-value denoted by the expression q from the pointer-type of q.' In En-

glish, this means that any pointer that previously referenced the variable becomes undefined,

and that the variable itself becomes inaccessible.

Suppose that several pointers reference a single dynamically allocated variable. If a call of a

dispose-like procedure only made its single argument pointer undefined, then the remaining

pointers would be 'dangling' references to the variable— they would still reference it. Unfor-

tunately, finding every pointer that references a given variable causes nightmares for imple-

mentors. In consequence, the 'error' frequently goes undetected.

138



Pointer Variables 12-1

12-1.1 Identified Variables

Since dynamically allocated variables don't have identifiers, they are

anonymous, and must be referred to by manufactured names. A dynami-

cally allocated variable is denoted by an identified- variable.

identified-variable = pointer-variable 'f .

pointer-variable = variable-access

.

It is an error if the pointer-variable used to form an identified-variable is

either nil or undefined.

Now, although a function's result-type may be a pointer type, a func-

tion call can't be used to construct an identified-variable. As shown in the

BNF, a pointer variable must be a variable-access (which a function call

isn't). For example, suppose that the declaration of function ListEnd

begins with:

function ListEnd (P: NodePointer): NodePointer;

etc.

ListEnd is a function that returns a pointer type, so the call

ListEnd(Current) represents a pointer to a dynamically allocated variable.

The assignment:

{illegal example}

Tail] . Data : = ListEnd ( Current) ] . Data

is incorrect, because it tries to use a function call in constructing an

identified variable. An auxiliary variable must be assigned the function's

value (as a pointer) to access the variable the pointer references:

A uxiliary : = ListEnd ( Current)

;

Tail]. Data := Auxiliary]. Data

Although an identified variable may have any type, in most applica-

tions it has a record type that contains at least one field that is a pointer to

another record of the same type. For instance:

type ElementPointer = ] Element;

Element = record

Data: integer;

Left, Right: ElementPointer

end;

var Current, Saved: ElementPointer;

Since variables of type Element contain pointers to other variables of

type Element, they can be used to form a variety of linked data structures:

lists, queues, trees, stacks, etc. Individual elements of most linked struc-

tures are practically identical (data fields, and one or more pointer fields

that provide links to other elements).
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Linked structures are characterized by the operations that can be per-

formed on them. A singly-linked list that might serve as a queue is imple-

mented with:

new (Saved); {Allocate the first list element or link.}

Saved] .Left: = nil; {Make the Left field a nil pointer.}

Saved] .Right := nil; {Make the Right field a nil pointer.}

Current := Saved; {Point Current at the first element.}

read (Current],Data); {Store data in the current link.}

new (Current].Right); {Allocate a new link.}

Current: = Current] .Right; {Advance the Current pointer.}

Current] .Left : = nil; {Make the Left field a nil pointer.}

Current].Right := nil; {Make the Right field a nil pointer.}

read (Current] .Data); {Store data in the current link.}

etc.

Saved

Left

Right

Data

nil

Notice that although the Right fields are used as links, the Left fields

are set to nil. If the application demanded it, we could easily create a

doubly-linked list:

new (Current] .Right); {Allocate a new link.}

Current] .Right] .Left : = Current; {Point the new link backward.}

Current := Current] .Right; {Advance the Current pointer.}

etc.

nil
Left

Right

Data

nil

Saved €>

Left

Right

Data ^7
Left

Right

Data

Current

As noted earlier, the relational operands = and < > may be given

pointer type operands. Either list created above can be searched for a

specific value, starting with the first element and searching toward the right,

with:

Current := Saved;

if Current < > nil then {make sure the list is nonempty}

while (Current] .Data < > SoughtData) and (Current] .Right< > nil)

do Current: = Current] .Right
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Notice that an additional check must be made on termination to see if the

sought element has actually been located— the list might empty, or just not

contain the desired element. An alternative formulation:

Current : = Saved;

if Current < > nil then (make sure the list is nonempty}

while ( Current] .Data < > SoughtData) and ( Current< > nil)

do Current := Current] .Right

contains a potential error. Suppose that the sought data is not contained in

the list. We will find ourselves in the awkward position of inspecting the

Data field of a nil pointer. Remember that, to help ensure portability,

boolean expressions should be assumed to be fully evaluated.

12-1.2 Dynamic Allocation of Variants

Variant forms of new and dispose let records with variant parts be allocated

and deallocated more efficiently.

Recall that one purpose of record variants is to let variables with dis-

joint lifetimes be overlaid in memory. The amount of space such a record

requires will be at least the size of its largest variant. Suppose, though, that

we want to allocate a 'small' variant. The alternative form of new

described below allows (but does not require) a processor to allocate the

minimum amount of space required.

newip, Cl,---,Cn) The procedure call newip, Cl,--,Cn) creates a

totally undefined variable of p's domain type, which p references, p
is a pointer variable-access, while Cl,-",Cn are case-constants (not

variables or other expressions) that apply to variants nested at increas-

ingly deep levels of the record.

1) The dynamically allocated variable has nested variants that correspond

to the case-constants CI, ,Cn.

2) These variants should not be changed, because it is an error if a vari-

ant that was not specified becomes active (unless it's at a deeper level

of nesting than Cn).

3) One case-constant for every potential variant in the range CI,-- ,Cn

must be specified. A variant not given must be at a deeper level of

nesting than Cn.

4) It is an error if a variable created using the second form of new i<=

accessed by the identified-variable of the variable-access of a factor, of

an assignment-statement, or of an actual-parameter. In English, this

means that the variable can't appear in an assignment, or as an actual

parameter (although its individual fields may).

5) If, as above, a variable is created using the second form of new, it is

an error to deallocate it using the first (short) form of dispose.

record variants 107-112

case constants 20-22
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12 Pointer Types

Once we have specified a given set of variant parts, we are stuck with it.

Rule 2 makes it an error to try to activate a different variant.

The required procedure dispose also has an alternative form.

dispose (p, Kl, • • • ,Km) The procedure call dispose (p, Kl,- • • ,Km) makes

the dynamically allocated variable referenced by p inaccessible by any

pointer variable.

1) Kl,- • • ,Km are case-constants that apply to variants nested at increas-

ingly deep levels of the variable.

2) It is an error if the variable was created by a call new(p, Kl,-- ,Kn)

and n isn't equal to m, or if any of the variants are different.

3) It is an error if the pointer variable p is nil or undefined.

Thus, an application of dispose must parallel that of new. A variable allo-

cated with the variant form must be disposed of in the same manner.

We close with some famous last words from C.A.R. Hoare:

'[Pointers] are like jumps, leading wildly from one part of a data structure to

another. Their introduction into high-level languages has been a step back-

ward from which we may never recover.' [Hoare73]

The problems of concern above involve possible confusion between a

pointer's value (an address), and the value of the variable located at that

address, as well as the potential for 'spaghetti' data structures. Fortunately,

the restrictions Pascal places on pointers— the prohibition against reading,

writing, or assigning pointers as integers— along with the specification of

procedure dispose, help obviate most of these concerns.
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Appendix A: A Quick Introduction

to Pascal

Pascal has been characterized in many ways: It is strongly typed, it en-

courages top-down design, it is structured, it is procedure-oriented, it is modu-

lar. This section is intended to impart a passing familiarity with the

language's features to programmers who are totally unfamiliar with Pascal. 1

A Pascal program begins with a heading that names the program, and

makes some specifications about its environment. Constants, types, vari-

ables, procedures, and functions are defined and declared as necessary, but

always in the order listed below. The program's actions are given as a se-

quence of statements, which can include invocations of declared procedures

or functions. Pascal programs follow this basic outline:

program program heading

label goto label declarations

const constant definitions

type simple and structured type definitions

var variable declarations

procedure or function subprogram declarations

begin

program statements

end.

Program Heading

The heading names the program and its parameters. Two parameters are

predefined in every Pascal implementation as the standard input and output

'files,' or devices, but other files (and potentially, other devices) may be

named as well. The heading:

program Foo {input, output);

names a program Foo, and tells the processor that the standard input and

output devices may be required at run-time. The canonical first example

program (which doesn't require any input) is:

program First {output);

begin

writeln ('Hello, world!')

end.

If it's possible to give a purely objective, totally academic, and wholly disinterested recom-

mendation for one's own book (without appearing to be excessively disingenuous!) let me
suggest Oh! Pascal! (D. Cooper and M. Clancy, W. W. Norton & Co., 1982) as an excellent

and easily followed introduction to Pascal and programming.
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Labels

Label definitions allow jumps via goto statements. Such jumps are seldom

used in Pascal, and are strictly regulated. A typical label definition, accom-

panied by comments in braces, is:

label 1, 2; (Label 1: Input panic.}

{Label 2: Attempted divide by zero.}

Constants

Constant definitions give symbolic names to values— integers, reals, indivi-

dual characters, strings, or new types of values defined by the programmer.

The value of a constant may not be changed during program execution.

Aside from the benefit they provide as mnemonic aids, constants are often

used to document implementation-defined values a program may rely on.

const pi = 3.1416;

Maxchar = 255;

Greeting = 'Hello, world!';

Testing = true;

Types

Type, in Pascal, is an attribute of every value, variable, and function.

When a variable or function is declared (see below), the type of the values

it will represent must be provided; this lets consistency checks be per-

formed at compile-time. Type definitions let the programmer rename exist-

ing types, and devise an infinite variety of new ones.

Types fall into three major categories: simple, structured, and

pointer. Simple types are groups of indivisible values. Four simple types

are predefined in Pascal— real, integer, boolean, and char. Additional simple

types may be enumerated by listing new groups of values, or subranged by

restricting a type to a subsequence of the values of another, previously

defined type. For example:

type Orders = 0..1000; {Subrange type}

Color = (red, blue, green); {Enumerated type}

A structured type defines a 'collection' of simple values, or an aggre-

gate of values of different types. There are four primitive structured types:

arrays, records, sets, and files. An array is an ^-dimensional table of

values, of any single type, that is indexed by one or more simple types. A
record is a union of values, possibly of different types, whose fields can be

accessed by name. A set is a group of simple values that share the same
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underlying type; specialized operators are defined for set-type operands. A
file defines a sequence of values of any type, and is often associated with

some external device.

New types may be structured in almost any combination. We can

name types that are arrays of records, files of such arrays, etc.:

•
. (Type definition continued}

Paints = array [Color] of Orders; (Array type}

Formula = record (Record type}

Major, Minor: Color;

MajorPercentage, MinorPercentage: 0..100

end;

Inventory = file of Formula; (File type}

Finally, pointer types are useful for creating linked data structures-

lists, trees, graphs, etc. A pointer is a named variable that references an

anonymous, dynamically allocated variable of some type. In most applica-

tions, the anonymous variable is defined as a record that includes a pointer

to another object of the same type as one of its fields.

• •
. (Type definition continued}

NodePointer = \ Node; (Pointer type}

Node = record

Data: Paints;

Left, Right: NodePointer

end;

Variables

Variable declarations allocate and name memory locations. All variables

must be declared, and may only denote values of one type. Relying in part

on the types defined above, we can make these variable declarations:

var i, Low, High: integer;

Sales: Paints;

First, Middle, Last: char;

Head, Tail: NodePointer;

BookKeeping: Inventory;

Procedures and Functions

Procedures and functions are named subprograms that may be invoked dur-

ing program execution. Aside from its heading, a procedure or function is

just like a program— it may include definitions and declarations of new, 'lo-

caf constants, types, variables, and subprograms, as well as statements to

be executed.
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Procedures and functions may have formal parameters, whose actual

parameters (arguments) differ between invocations. There are several sorts

of formal parameters. Value-parameters are like locally declared variables,

but they are initialized by values passed during the call. Variable-

parameters rename relatively global variables, allowing them to be accessed

or assigned to within the subprogram. Procedures and functions can also

be passed and renamed through a parameter mechanism.

A function call appears within a program as part of an expression. It

computes and represents a value, and may have any simple type. Many
standard functions are predefined in every Pascal implementation. An ex-

ample of a user-declared function is:

function ValidMeasures {Length, Width: real): boolean;

(Represents true if its parameters are both positive values.}

begin

ValidMeasures : = {Length > 0.0) and {Width > 0.0)

end;

A procedure call appears as a statement with a program. A sample pro-

cedure declaration that uses both value-parameters and a variable-parameter

is:

procedure FindArea {Length, Width: real; var Area: real);

{Computes an area given length and width.}

begin

Area:= Length* Width

end;

Input and Output

In Pascal, two devices (normally the keyboard and terminal screen) are set

aside as the 'standard' input and output devices. Both of these have the

characteristics of textiles, which means that they process characters and al-

low a line structure.

Pascal relies on four predefined procedures for most program input

and output. Values of any of the required types may be output or (except

for boolean) read in and attributed to variables. The two output procedures

buffer for output {write) or control the production of distinct output lines

{writeln). The two input procedures read and readln get input, possibly

discarding the remainder of any input line {readln).

writeln ('Enter a number'); {Prints 'Enter a number'}

readln {Number) {Reads the value of Number from the standard input.}

A complete program that uses the subprograms defined earlier, as well as a

statement described below, is:
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program ComputeArea {input, output)';

{Computes an area, if possible.}

var Top, Side, Result: real;

function ValidMeasures {Length, Width: real): boolean;

{Decides if its parameters are both positive values.}

begin

ValidMeasures : = {Length > 0) and ( Width > 0)

end; {ValidMeasures}

procedure FindArea {Length, Width: real; var Area: real);

{Computes an area given length and width.}

begin

Area:= Length* Width

end; [FindArea]

begin { ComputeArea }

writeln ('Please enter values for Top and Side.');

readln {Top, Side);

if ValidMeasures { Top, Side)

then begin

FindArea {Top, Side, Result);

writeln ('Area is ', Result)

end

else writeln ('Can"t compute negative areas.')

end . { ComputeA rea }

Statements

Statements are the basic units of action in a Pascal program. Simple state-

ments include procedure calls (as above), the assignment statement, and

the goto, shown below:

High : = Low;

goto 1

The structured statements include conditional two-way branches:

if BooleanCondition

then Statement

else A IternativeStatement

multi-way branches:

case Expression of

ValueV. Statementl;

ValueN: StatementN

end
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definite iteration:

for /'
: = Initial to Final

do Statement

and two forms of conditional iteration:

while BooleanCondition

do Statement

repeat

Statement

until BooleanCondition

For syntactic reasons, any number of statements may be grouped

between a begin and end This forms a compound statement, which is treat-

ed as an indivisible unit. Note that the statement parts of program and

subprogram alike are in the form of compound statements.
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As noted in section 1, an error is a violation of the Standard that a con-

forming processor may leave undetected. However, each processor's docu-

mentation must specify the manner in which errors— particularly undetected

errors— are dealt with. The errors contained in this appendix serve as a

checklist for potentially non-portable program features. They are numbered

only for convenience, since there are no 'official' error numbers. Page

numbers in brackets refer to the original discussion of each error.

Array Types and Packing

1. It is an error if the value of any subscript of an indexed-variable isn't

assignment-compatible with its corresponding index-type. [115]

2. In a call of the form pack (Vunpacked, StartingSubscript, Vpacked), it is

an error if the ordinal-typed actual parameter (StartingSubscript) isn't as-

signment compatible with the index-type of the not-packed array parameter

(Vunpacked). [120]

3. In a call of the form pack (Vunpacked, StartingSubscript, Vpacked), it is

an error to access any undefined component of Vunpacked. [121]

4. In a call of the form pack (Vunpacked, StartingSubscript, Vpacked), it is

an error to exceed the index-type of Vunpacked. [120]

5. In a call of the form unpack( Vpacked, Vunpacked, StartingSubscript) , it is

an error if the ordinal-typed actual parameter (StartingSubscript) isn't as-

signment compatible with the index-type of the not-packed array parameter

(Vunpacked). [120]

6. In a call of the form unpack ( Vpacked, Vunpacked, StartingSubscript) , it is

an error for any component of Vpacked to be undefined. [120]

7. In a call of the form unpack( Vpacked, Vunpacked, StartingSubscript), it is

an error to exceed the index-type of Vunpacked. [120]

Record Types

8. It is an error to access or reference any component of a record variant

that is not active. [110]

9. It is an error if any constant of the tag-type of a variant-part does not

appear in a case-constant-list. [108]

10. It is an error to pass the tag-field of a variant-part as the argument of a

variable-parameter. [110]

11. It is an error if a record that has been dynamically allocated through a

call of the form new(p, CI,- ,Cn) is accessed by the identified-variable of
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the variable-access of a factor, of an assignment statement, or of an actual

parameter. [141]

File Types, Input, and Output

12. It is an error to change the value of a file variable / when a reference

to its buffer variable f\ exists. [82, 128]

13. It is an error if, immediately prior to a call of put, write, writeln, or

page, the file affected is not in the 'generation' state. [128]

14. It is an error if, immediately prior to a call of put, write, writeln, or

page, the file affected is undefined. [128]

15. It is an error if, immediately prior to a call of put, write, writeln, or

page, the file affected is not at end-of-file. [128]

16. It is an error if the buffer variable is undefined immediately prior to

any use of put. [128]

17. It is an error if the affected file is undefined immediately prior to any

use of reset. [127]

18. It is an error if, immediately prior to a use of get or read, the file

affected is not in the 'inspection' state. [128]

19. It is an error if, immediately prior to a use of get or read, the file

affected is undefined. [128]

20. It is an error if, immediately prior to a use of get or read, the affected

file is at end-of-file. [128]

21. It is an error if, in a call of read, the type of the variable-access isn't

assignment compatible with the type of the value read (and represented by

the affected file's buffer-variable). [130]

22. It is an error if, in a call of write, the type of the expression isn't as-

signment compatible with the type of the affected file's buffer-variable.

[130]

23. In a call of the form eof (f), it is an error for /to be undefined. [128]

24. In any call of the form eoln (f), it is an error for /to be undefined.

[133]

25. In any call of the form eoln if), it is an error for eof (/) to be true.

[133]

26. When reading an integer from a textfile, it is an error if the input se-

quence (after any leading blanks or end-of-lines are skipped) does not form

a signed-integer. [50]

27. When an integer is read from a textfile, it is an error if it isn't assign-

ment compatible with the variable-access it is being attributed to. [50]

28. When reading a number from a textfile, it is an error if the input se-

quence (after any leading blanks or end-of-lines are skipped) does not form

a signed-number. [50]
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29. It is an error if the appropriate buffer variable is undefined immediately

prior to any use of read. [130]

30. In writing to a textfile, it is an error if the value of TotalWidth or Frac-

tionalDigits, if used, is less than one. [54]

Pointer Types

31. It is an error to try to access a variable through a nil-valued pointer.

[139]

32. It is an error to try to access a variable through an undefined pointer.

[139]

Dynamic Allocation

33. It is an error to try to dispose of a dynamically-allocated variable when
a reference to it exists. [138]

34. When a record with a variant part is dynamically allocated through a

call of the form newip, CI,- • ,Cn) it is an error to activate a variant that

was not specified (unless it's at a deeper level than Cn). [142]

35. It is an error to use the short form of dispose (e.g., dispose (p)) to deal-

locate a variable that was allocated using the long form (e.g., newip,

Cl,'",Cn)). [141]

36. When a record with a variant part has been dynamically allocated

through a call of the form newip, CI,'" ,Cn), it is an error to specify a

different number of variants in a call of dispose. [142]

37. When a record with a variant part has been dynamically allocated

through a call of the form newip, CI,"' ,Cn), it is an error to specify a

different sequence of variants in a call of dispose. [142]

38. It is an error to call dispose with a nil-valued pointer argument. [138]

39. It is an error to call dispose with an undefined pointer argument. [138]

Required Functions and Arithmetic

40. For a call of the sqr function, it is an error if the result is not in the

range —maxint..maxint. [36]

41. In a call of the form Inix), it is an error for x to be less than or equal

to zero. [36]

42. In a call of the form sqrtix), it is an error for x to be negative. [36]

43. For a call of the trunc function, it is an error if the result is not in the

range —maxint.maxint. [36]

44. For a call of the round function, it is an error if the result is not in the

range —maxint..maxint. [36]

45. For a call of the chr function, it is an error if the result does not exist.

[37]

151



Appendix B: Collected Errors

46. For a call of the succ function, it is an error if the result does not exist.

[37]

47. For a call of the pred function, it is an error if the result does not exist.

[37]

48. In a term of the form x/y, it is an error for y to equal zero. [31]

49. In a term of the form i div j, it is an error for j to equal zero. [33]

50. In a term of the form i mod j, it is an error if j is zero or negative.

[33]

51. It is an error if any integer arithmetic operation, or function whose

result type is integer, is not computed according to the mathematical rules

for integer arithmetic. [32]

Parameters

52. It is an error if an ordinal-typed value-parameter and its actual-

parameter aren't assignment compatible. [81]

53. It is an error if a set-typed value-parameter and its actual-parameter

aren't assignment compatible. [81]

Miscellaneous

54. It is an error for a variable-access contained by an expression to be

undefined. [42]

55. It is an error for the result of a function call to be undefined. [77]

56. It is an error if a value and the ordinal-typed variable or function-

designator it is assigned to aren't assignment compatible. [10, 77]

57. It is an error if a set-typed variable, and the value assigned to it, are

not assignment compatible. [10]

58. On entry to a case-statement, it is an error if the value of the case-

index does not appear in a case-constant-list. [22]

59. If a for-statement is executed, it is an error if the types of the control-

variable and the initial-value aren't assignment compatible. [28]

60. If a for-statement is executed, it is an error if the types of the control-

variable and the final-value aren't assignment compatible. [28]
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actual-parameter = expression\ variable-access

I
procedure-identifier

\ function-identifier .

actual-parameter-list = '(' actual-parameter {
',' actual-parameter} ')'

.

adding-operator = ' +'
I

'—
' I

'or' .

apostrophe-image — ' "
' .

array-type = 'array' '[' index-type {
',' index-type] '1' 'of component-type

.

array-variable = variable-access

.

assignment-statement = ( variable-accessl function-identifier) ': = ' expression.

base-type = ordinal-type .

Z?/ocA: = label-declaration-part

constant-definition-part

type-definition-part

variable-declaration-part

procedure-and-function-declaration-part

statement-part

.

boolean-expression = expression .

bound- identifier = identifier .

buffer-variable = file-variable 'f .

case-constant = constant

.

case-constant- list = case-constant {
' ,' case-constant } .

case-index = expression .

case-list-element = case-constant-list ' :' statement

.

case-statement = 'case' case-index' of

case-list-element {
';' case-list-element) [

';'
] 'end' .

character-string = '''
string-element [ string-element]

'''
.

component-type = type-denoter .

component-variable = indexed-variable\ field-designator .

compound-statement = 'begin' statement-sequence 'end? .

conditional-statement = if-statement\ case-statement

.

conformant-array-parameter-specification = value-conformant-array-specification

I
variable-conformant-array-specification
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conformant-array-schema = packed-conformant-array-schema

I
unpacked-conformant-array-schema .

constant — [ sign ] ( unsigned-number
I
constant-identifier ) I

character-string

.

constant-definition = identifier'^ constant.

constant-definition-part = [ 'const' constant-definition ' ;'
{ constant-definition'';'' } ] .

constant-identifier = identifier

.

control-variable = entire-variable

.

digit = '0'
|

1'
I

'2'
|

'3'
|

'4'
|

'5'
I

'6'
|

'7
I

'8'
|

'9'
.

digit-sequence = digit [ digit} .

directive = letter { letter
I
digit } .

domain-type = type-identifier .

else-part = 'else' statement.

empty-statement — .

entire-variable = variable-identifier

.

enumerated-type ='(' identifier-list ')'
.

expression = simple-expression [ relational-operator simple-expression ] .

factor > variable-access
I
unsigned-constant

I
Junction-designator \ set-constructor

I

' expression ')'
I
'not' factor .

factor > bound-identifier

.

field-designator = record-variable''.' field-specifier I
field-designator-identifier .

field-designator-identifier = identifier

.

fieId- identifier = identifier .

field-list = [ ( fixed-part [
' ;' variant-part ] I

variant-part )[';']].

fieId-specifier = field-identifier .

file-type = 'file' 'of component-type .

file-variable = variable-access

.

final-value = expression

.

fixed-part = record-section {
' ;' record-section } .

for-statement = 'for' control-variable'': = ' initial-value

( 'to'
I
'downto' ) final-value 'do' statement

.

formal-parameter-list = '(' formal-parameter-section {
';' formal-parameter-section} ')'

formal-parameter-section > value-parameter-specification

I
variable-parameter-specification

I
procedural-parameter-specification

I
functional-parameter-specification

.
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formal-parameter-section > conformant-array-parameter-specification

.

fractional-part = digit-sequence

.

function-block = block

.

Junction-declaration = function-heading ' ;' directive

I
Junction-identification ' ;' function-block

I function-heading ' ;' Junction-block .

Junction-designator = Junction-identifier [ actual-parameter-list ] .

Junction-heading = 'function' identifier [ formal-parameter-list] ':' result-type.

function-identification = 'function' Junction-identifier .

Junction-identifier = identifier .

functional-parameter-specification = function-heading .

goto-statement = 'goto' label.

identified-variable = pointer-variable ' f .

identifier = letter { letter
I
digit } .

identifier-list = identifier {
',' identifier) .

if-statement = ' if boolean-expression ' then' statement [ else-part ] .

index-expression = expression .

index-type = ordinal-type

.

index-type-specification = identifier '
.

.

' identifier ' :' ordinal-type- identifier .

indexed-variable = array-variable ' [' index-expression [
',' index-expression} '1'

.

initial-value = expression .

label = digit-sequence

.

label-declaration-part = [ 'label' label {
',' label) ';'

] .

letter = 'a'
I 'b' I

'c'
I
'd' I 'e'

I
'f

I

'g'
I
'h' I 'i' I

'j'
I
'k' I T

I 'm'
I
'n' I V I

'p'
I

'q'
I
'r'

I
's' I 't' I

'u'
I
V | 'w' | 'x' I

'y'
I 'z' .

member-designator = expression {
'

.

.

' expression } .

multiplying-operator = '*'
I

'/'
I
'div' | 'mod' I

'and' .

new-ordinal-type = enumerated-type
I
subrange-type .

new-pointer-type = 'f domain-type .

new-structured-type = [ 'packed' ] unpacked-structured-type .

new-type = new-ordinal-type\ new-structured- type \ new-pointer-type.

ordinal-type = new-ordinal-type \ ordinal-type-identifier .

ordinal-type-identifier = type-identifier

.

packed-conformant-array-schema = 'packed' 'array' '(' index-type-specification'']''

'of type-identifier

.

155



Appendix C: Collected BNF

pointer-type = new-pointer-type
I
pointer-type-identifier .

pointer-type-identifier = type- identifier .

pointer-variable = variable-access .

procedural-parameter-specification = procedure-heading .

procedure-and-function-declaration-part —

{ ( procedure-declaration
I
function-declaration )';'}•

procedure-block = block .

procedure-declaration = procedure-heading ' ;' directive

I
procedure-identification ' ;' procedure-block

I
procedure-heading ' ;' procedure-block .

procedure-heading = 'procedure' identifier [ formal-parameter-list] .

procedure-identification
=' procedure' procedure-identifier .

procedure-identifier = identifier

.

procedure-statement = procedure-identifier ( [ actual-parameter- list ]

I
read-parameter-list

I
readln-parameter-list

I
write-parameter-list

I
writeln-parameter-list) .

program = program-heading ' ;' program-block ' .'
.

program-block = block .

program-heading — 'program' identifier [
'(' program-parameters ')'

] .

program-parameters = identifier-list .

read-parameter-list = '('
[ file-variable ','

] variable-access {
',' variable-access} ')'

.

readln-parameter-list — ['(' ( file-variable
I
variable-access) { V variable-access} ')'

]

real-type-identifier = type-identifier

.

record-section = identifier-list ' :' type-denoter .

record-type = 'record"
1

fieId- list 'end
1

.

record-variable = variable-access .

record-variable- list — record-variable [
',' record-variable} .

relational-operator = ' ='
I

'<>'
I

'<' |'>' |'<=' |'>='|'in' .

repeat-statement = 'repeat' statement-sequence
'

until' boolean-expresion .

repetitive-statement = repeat-statement\ while-statementl for-statement .

result-type = simple-type-identifier\ pointer-type-identifier .

scale-factor = signed- integer .

set-constructor ='['
[ member-designator {

',' member-designator} ]
'1'

.

set-type ='set' 'of base-type.
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Appendix C: Collected BNF

sign = '+'!'-'.

signed-integer = [ sign ] unsigned-integer .

signed-number = signed-integer
I
signed-real

.

signed-real = [ sign ] unsigned-real

.

simple-expression = [ sign ] term { adding-operator term ) .

simple-statement = empty-statement\ assignment-statement

I
procedure-statement] goto-statement

.

simple-type = ordinal-type
I
real-type-identifier .

simple-type-identifier = type-identifier .

special-symbol = * +'
|

*-»
|

••'
|
7'

I ' -» I
'<'

I

'>'
I 'P I

l

V

I '.'I',' I':' I';' ITI'C I')'

I

'<>'
I

'<='
I

'>='
I

': = ' | '..'
| word-symbol.

statement = [ label ' :'
] ( simple-statement

I
structured-statement ) .

statement-part = compound-statement

.

statement-sequence = statement {
' ;' statement } .

string-character = one-of-a-set-of-implementation-defined-characters

.

string-element = apostrophe-image
I
string-character .

structured-statement = compound-statement
I
conditional-statement

I
repetitive-statement

I
with-statement .

structured-type = new-structured-type
I
structured-type-identifier .

structured-type-identifier ~ type-identifier

.

subrange-type = constant'..' constant.

tag-field = identifier

.

tag-type = ordinal-type-identifier

.

term = factor { multiplying-operator factor) .

type-definition = identifier '
=' type-denoter .

type-definition-part = [ 'type' type-definition'' ;'
{ type-definition ' ;'

} ] .

type-denoter = type-identifier] new-type.

type-identifier = identifier

.

unpacked-conformant-array-schema = 'array' '[' index-type-specification

{
';' index-type-specification) T
'of ( type-identifier\ conformant-array-schema)

unpacked-structured-type = array-type\ record-type\ set-type \ file-type .

unsigned-constant = unsigned-number] character-string] constant-identifier] 'nil' .

unsigned-integer = digit-sequence .
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Appendix C: Collected BNF

unsigned-number = unsigned-integer I
unsigned-real .

unsigned-real = unsigned-integer' .' fractional-parti V scale-factor]

I
unsigned-integer'*? scale-factor.

value-conformant-array-specification = identifier- list

'

:' conformant-array-schema .

value-parameter-specification = identifier-list

'

:' type- identifier .

variable-access = entire-variable\ component-variable] identified-variable\ buffer-variable .

variable-conformant-array-specification = 'var' identifier-list':'' conformant-arrary-schema

variable-declaration — identifier-list

'

:' type-denoter .

variable-declaration-part — [ 'var' variable-declaration' ;' { variable-declaration';'' } ] .

variable-identifier = identifier .

variable-parameter-specification = 'var' identifier-list':'' type-identifier.

variant — case-constant-list' :' 'C field-list ')'
.

variant-part = 'case' variant-selector 'of variant {
';' variant] .

variant-selector = [ tag-field

'

:'
] tag-type .

while-statement = 'while' boolean-expression ' do' statement.

mth-statement — 'with' record-variable-list' do' statement.

word-symbol = 'program'
I
'label'

I
'const'

I
'type'

I
'procedure'

I

1

function
1

I
var'

I
begin'

I
end'

I
div' | mod'

I and' I not'
I

or' I in'

I
array'

I
file'

I
record'

I
set'

I
packed'

I
case'

I
of

I
for'

I to' I downto'
I
'do'

I
'if

I
'then'

I
else'

I
repeat'

I
until'

I
while'

I
with'

I
goto'

I nil' .

write-parameter = expression [

'
:' expression [

'

:' expression ] ] .

write-parameter-list ='(' [file-variable' ,' ] write-parameter {
',' write-parameter] ')'

.

writeln-parameter-list = [
'('

( file-variable \ write-parameter) [
',' write-parameter] ')'

] .
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Appendix D: Index to BNF in Text

actual-parameter 12, 74

actual-parameter-list 12, 74

adding-operator 40

apostrophe-image 6, 35, 117

array-type 91, 113

array- variable 70, 115

assignment-statement 9, 77

base-type 121

block 58, 73

bound-identifier 90

buffer-variable 71, 127

case-constant 20, 108

case-constant-list 20, 108

case-index 20

case-list-element 20

case-statement 20

character-string 6, 66, 117

comment 7

component-type 113, 125

component-variable 70

compound-statement 16

conditional-statement 8

conformant-array-parameter-specification 89

conformant-array-schema 90

constant 20, 65

constant-definition 65

constant-definition-part 59, 65

constant-identifier 65

control-variable 26

digit 4

digit-sequence 5, 13, 32

directive 6, 86

domain-type 136

else-part 17

empty-statement 15

entire-variable 26, 70

enumerated-type 97

expression 41

factor 41,90

field-designator 71, 104

field-designator-identifier 105

field-identifier 71

field-list 102, 108

field-specifier 71

file- type 125

file-variable 71, 127

final-value 26

fixed-part 102, 108

for-statement 26

formal-parameter-Jist 79

formal-parameter-section 79, 89

fractional-part 5, 31

function-block 76

function-declaration 76, 86

function-designator 77

function-heading 76, 83

function-identification 87

function-identifier 77

functional-parameter-specification 79, 83

goto-statement 13

identified- variable 71, 139

identifier 3

identifier-list 68, 80, 81, 97, 102, 108, 130

if-statement 17

index-expression 70, 115

index-type 91, 113

index-type-specification 90

indexed-variable 70, 115

initial-value 26

label 6, 13

label-declaration-part 13, 59

letter 4

member-designator 122

multiplying-operator 40

new-ordinal-type 97

new-pointer-type 136

new-structured-type 101

new-type 68, 95

ordinal-type 30, 97, 113

ordinal-type-identifier 97

packed-conformant-array-schema 90

pointer-type 136

pointer-variable 71, 139

procedural-parameter-specification 79, 83
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Appendix D: Index to BNF in Text

procedure-and-function-declaration-part 59, 73

procedure-block 73

procedure-declaration 73, 86

procedure-heading 73, 83

procedure-identification 87

procedure-identifier 12

procedure-statement 12, 74

program 58

program-block 58

program-heading 130

program-parameters 130

read-parameter-list 48, 133

readln-parameter-list 48, 133

record-section 102, 108

record-type 102, 108

record-variable 71, 105

record-variable-list 105

relational-operator 40

repeat-statement 22

repetitive-statement 8

result-type 76

scale-factor 5, 31

set-constructor 122

set-type 121

sign 5, 32

signed-integer 5, 32

signed-number 5

signed-real 5, 31

simple-expression 41

simple-statement 8

simple-type 30, 96

special-symbol 3

statement 8, 13

statement-part 59

statement-sequence 14, 16, 22

string-character 6, 117

string-element 6, 66, 117

structured-statement 8

structured-type 101

subrange-type 99, 113

tag-field 108

tag-type 108

term 41

type-definition 95

type-definition-part 59, 95

type-denoter 68, 95, 102, 108, 113

type-identifier 68

unpacked-conformant-array-schema 90

unpacked-structured-type 101

unsigned-constant 41

unsigned-integer 5, 32

unsigned-number 5, 41

unsigned-real 5, 31

value-conformant-array-specification 89

value-parameter-specification 79, 80

variable-access 42, 70

variable-conformant-array-specification 89

variable-declaration 68

variable-declaration-part 59, 68

variable-identifier 70

variable-parameter-specification 79, 81

variant 108

variant-part 108

variant-selector 108

while-statement 24

with-statement 105

word-symbol 3

write-parameter 52, 133

write-parameter-list 52, 133

writeln-parameter-list 52, 133
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Appendix E: Collected Syntax Diagrams

ifstatement

if boolean-expression D
c

"

—

— then—^statement—

y

C else —+- statement

case statement

case— expression— of-

j
constant—-r— :

— statement

C
T—

T

end

while* statement

while—* boolean-expression

c
=>

do —» statement

repeat statement

Lrepeat—^—* statement-

^ until—+* boolean-expression

for statement

for—*- variable-identifier— :
=— expression—

<^
>— expression—

^

^-downto—

'

J
^do

—

^statement

to
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Appendix E: Collected Syntax Diagrams

compound statement

Lbegin—^— statement

C
3

end

with statement

Lwith ^-»" record-variable

C do— statement

read call

read—>( «r ^ y
—

j
—+ variable-access —<r—) •

^+~file- variable —* ,
—/ ^ » * '

readln call

readln .

^*"(—
-v 7*- —^-variable-access % -H
^-^file-variable -^ ,

—' »** ' /

w/te call

write—( ^
»

^ j—^write-parameter—^—»)

^*-file- variable—»-, —' > ,
-* '

writeln call

writeln—

^

*
1

^—»(—<r -7*

—

-7~-+~write-parameter—^

—

j+)

^-^file-variable •< », —' ^ — * -+ 'J

write-parameter

expression — TZ *
—: —+-exnrexpression

:
—^-expression
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Appendix E: Collected Syntax Diagrams

factor

^\ (

—

—expression—*•)

-not——factor

variable-access

-unsigned-constant

set-constructor

-function-identifier—<-— actual-parameter -list ^-

term

factor ~r TTT T^~
* / div mod and

-factor** ^ * <* J- '

simple-expression

term ~r T

^— term -* ^

expression

simple-expression

> > > > > > \ f
-

<> < > < = > = in

I I L I L L ^— simple-expression—'

signed-integer

-&" cr^zr

signed-real

\ TT*^/Y~^) ^ e {** "^
(

*- digit—
j

—^ +-

163



Appendix E: Collected Syntax Diagrams

program

program—— identifier J-+- ( W identifier—^—) W

;

^ -label-declaration part—
)

constant-definition-part-

variable-declaration-part-

-^procedure-and-function-declaration-part-

(
^

-begin—^-^ statement

cr
5

end-

label-declaration-part

label -r-^1 to 4 digits

TZ IT"

constant-definition-part

const -^identifier — =

/»•+ -n /^-unsigned-number—

y

^-*— ^ ^-constant- identifier—

'

any-character-except-LIT

variable-declaration-part

var -identifier J. ctype- identifier

new-type
">

7

identifier

letter

digit-

letter-
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Appendix E: Collected Syntax Diagrams

type-definition-part

type—7—*- type-identifier

-

-*• type-identifier

L 1(— —*• identifier
*-*) >

-constant -constant

-\
—

^type-identifier

packed -

j
-array-type

-

^record-type

-set-type
—

-file-type
—

~^

"^

">

7

new-ordinal- type

I(

—

^ - identifier -^- »)2—;
constant

-

constant

array-type

array—[—7
—^ordinal-type-j—**oramai-rype *-

v ,^ /

. /-+*iype-iaennjier—

v

~^~^new-tvpe J~

set- type

set—M>f-
irdinal-type-identfier

-new-ordinal- type

file-type

file-*, of- <Z
type- identifier

new-type
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Appendix E: Collected Syntax Diagrams

record-type

record-

t+field- list-

czend

field-list

'identifier T~
L

C type-identifier—

y

new-type '

-case V ^tag-field- lzr~ ordinal-type-identifier—»-of

D
case-constant- -( Y^field-list—y~ w-»*«r^ T

record with fixed-part only

:—-

record—V*- identifier—r
v »-« ' C type-identifier—

\

-new-type

Cend
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Index

abs 36

accuracy of reals 31-32

actual-parameter-list 12-13, 79

actual-parameters 79

and value-parameters 81

and variable-parameters 83

of function 78

of procedure 12, 74

order of evaluation 13,78

activations 63-64

activation-point 64

activation records 94

active variant 110

adding-operators 39-40

address in memory 137

allocation of memory 67

alternative symbols 4, 7

and 33, 44

precedence of 39

anonymous
types 69

pointer variables 138

ANSI Pascal v, xiii

apostrophe-image 6, 35

arctan 36

arguments

see actual-parameters

arithmetic functions 36

arithmetic operators 43-44

array 113

array-type 112-121

arrays of arrays 116

assignment to 115-117

components 112

component-type 113

dimensions 114

index 112-113

index-type 113

indexed-variables 70,115-117

output of 118

packed 119-121

range errors 115-116

strings 117-119

subscripts 115

ASCII 35f

assignment

compatibility 10-11

operator 10

statement 10-11

to array components 115-117

to functions 76

to record fields 104

to sets 123

Backus-Naur Formalism 2-3

BNF
collected 153-158

index to 159

base type of sets 122

blocks 58-59

activation of 63-64

boolean

expressions 33-34, 45-46

functions 38

operators 33, 44

printing 55

bound identifiers 88, 90-91

buffering output 48, 53-54

buffer- variable 71, 127

calls

function 36,

procedure 12, 74

canonical set-of- T 44, 122

Carangi, Gia 5, 104

cardinality 122

case 20

case-constant-list 20, 108

case-statement 20-22

case-constants 20-21

case-constant-list 20, 108

case-index 20
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Index

case-list-element 20

char 34-35

constants 35

printing 55

character-strings

as constants 66

as tokens 6

printing 56, 118

string types 117-119

chr 37-38

coercion, I/O 50

collating sequence 35

comments 6

comparing values 45-6

compatibility 10

compiler 1

components

of files 125-126

of arrays 112

component-variable 70

compound statement 16-17

computed subscripts 115

congruous parameter lists 85-86

conditional iteration 22-25

conditional-statement 8

conformant array parameters 87-94

and Pascal levels xiii, 88

bound identifiers 88, 90-91

conformability 91-92

conformant-array-schema 90

correspondence of index types 91

fixed component type 90

formal-parameter-section 89

syntax of 89-91

value-conformant-array-parameters 92-94

variable-conformant-array-parameters 92

const 65

constant-definition-part 65

constants

case 20

character strings 66, 118

of ordinal types 98

of simple types 21, 65

of type char 35

required 66

structured 66

user-defined 65-66

control characters 34

control statements

see statements

correctness of programs xiif

cos 36

control-variable

assignment to 26-28

threatening 27-28

correspondence

of case-constants 108

of index types 91

data types

array 112-121

file 125-135

ordinal 97-100

pointer 136-142

real 31

record 102-112

set 121-125

simple 30, 96-100

string 117-119

subrange 99-100

text 131

data structures 101

linked 139-140

declarations

forward 86-87

label 13

function 76

procedure 73

variable 67-68

defining points 59

of field identifiers 103

of field-designator-identifiers 106

of required identifiers 63

definition parts

constant 65

type 95

see also individual types

De Morgan's laws 34

devices, I/O 47

difference of sets 44, 124

digit 4

digit-sequence 5

dimensions, array 114

directives 6, 86

discriminated type-union 107

170



Index

dispose 138, 142

distributive laws 34

div 32-33

domain-type 136

downto 26

dyadic operators 39, 44

dynamic allocation 71, 137, 141-142

dynamic arrays

see conformant array parameters

e (scale factor) 5

EBCDIC 35f

EBNF 2

else 17

else-part 17-20

association with if 19

empty

set 122

statement 15-16

end-of-line 50-52, 132

entire-variable 70

entry condition 24

enumerated types 97-99

printing of 118-119

eof 38, 128

eoln 38, 133

error 1

collected 149-152

exit condition 25

exp 36

exponentiation 44

expression 41

expressions 39-46

BNFof 40-43

boolean 33-34, 45-46

evaluation of 39-40

full evaluation 40

operator precedence in 39

set 123-124

extensions 1

external

character representation 52

files 130-131

factor 41

false 33

fields

active 110

assignment to 104

field list 102, 108

printing 54

tag 107-108

variant 108-112

field-designator 71, 104

field-designator-identifier 1 04- 1 06

field width 54

file 125

file-type 125-135

as parameters to programs 130-131

as parameters to subprograms 82

buffer-variable 71, 127

components 125-126

end-of-file 128

external 130-131

generating, inspecting 126

procedures for 127-130

textfiles 131-135

window 127

fixed component type 90

fixed part (of records) 102

fixed-point output 56-57

floating-point output 56

formal-parameter-list 79

formal-parameter-section 79

and conformant array 89

formal parameters 73-74, 79

for 26

format, output 54-57

for-statement 26-39

control-variable 26-27

final-value 28

initial-value 28

forward 6, 86

fractional-part 5

free type-union 107

full evaluation 40

function 76

function-designator 77

function-identification 87

functional-parameter-specification 83

functions 76-78

as parameters 83-87

assignment to 77

blocks 59, 76

calling 77

forward declaration of 86-87
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Index

required 35-38

recursive 78

result type 76

see also required functions

get 128

global identifiers 61, 75

goto 13

goto-statement 13-15

and activations 64

Hansen, Patti 41, 66, 117

heading

function 76

procedure 73-74

program 131

hierarchy of operators

see precedence

host type 99

identified-variable 71, 139

identifier

bound 88, 90-91

ordinal type constant 98

scope of 59-60, 62-63

as token 3

identifying-value 137

if 17

if-statement 17-20

nested 19

incomprehensible quotes ix, 93, 13S

implementation-defined 1

implementation-dependent 1

in 45-46, 124

index-type 113

indexed-variable 70,115-117

initializing variables 64, 67

input 47, 63f, 131-132

input 48-52, 131-132

buffering 48

devices 47

interactive 134-135

lines of 132

procedures for 48-50

integer

as token 5, 32

BNFof 5

enumeration of 32

operators 32-33, 43-44

printing 55

reading from textfiles 50

interactive programs 54, 134-135

interpreter 1

intersection of sets 44,124
iterative statements

for 26-29

repeat 22-24

while 24-25

keywords 3

label 13

labels

as tokens 6

declaration part 13

not case-constants 21

placement of 13-15

letter 4

Level Pascal v

Level 1 Pascal v, 87-94

lexicographic ordering 46

limitations on set size 121

linked structures 139-140

In 36

local identifiers 61, 75

logarithm function 36

logical operations 33-34

looping statements

for 26-29

repeat 22-24

while 24-25

maxint 32, 66

meta-symbols 2-3

meta-identifiers 2

mod 32-33

modularity 79

monadic arithmetic operators 43

multiplying-operators 39-40

name equivalence 1

1

nested

blocks 59

if statements 19

with statements 106

new 137, 141
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new-type 68-69, 95-96

nil 137

nil pointer 137

not 33, 44

precedence of 39

null strings 35

numbers 5

object code 72

odd 38

one-pass compilation 2

operator precedence 39

operators

adding 39-40

boolean 33

dyadic 39, 44

exponentiation (lack of) 44

integer 32-33

monadic 43

multiplying 39-40

real 31

relational 39-40

set 44, 123

tables of 43, 44, 45

or 33, 44

precedence of 39

ord 37

ordinal functions 37-38

ordinal types

boolean 33-34

char 34-35

enumerated 97-99

integer 32-33

ordinal 97

subrange 99-100

output 47, 63f, 131-132

output 52-57, 131-132

buffering 48, 53-54

devices 47

formats 54-57

lines of 53-54, 132

of character strings 56,118

procedures for 52-53

overlaying 107

pack 119-120

packed 101

packing 101

of arrays 119-121

of arrays of char 121

page 132-133

parameters 79-86

actual 12, 78

binding of 74

conformant array 87-94

evaluation of 13, 78

formal 73-74, 79

procedural and functional 83-86

program 130-131

value 80-81

variable 81-83

parentheses

in expressions 39

in record variants 109

Pascal

Level 1 87-94

motivations for iii-v

Standard v

pointer-type 136-142

accessing 71, 139

allocating 137, 141

comparison 46

defining 136-137

disposing of 138, 142

domain-type 136

identified-variable 71, 139

identifying-value 137

linked structures 139-140

nil-value 137

self-referencing 137

precedence

of operators 39

of names 61

pred 37

procedure 73

procedural-parameter-specification 83

procedure-identification 87

procedure-statement 12-13

procedures 73-75

as parameters 83-86

blocks 59, 73

calls 12-13, 74

declaration 73

forward declaration of 86-87

recursive 75

required see cover and by name
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processor 1

production, BNF 2

program 130

program 58-59

and Standard 1

block 59

batch, interactive 54, 134-135

heading 130

indentation 19

parameters 130-131

pseudocode 72

put 128

quotes, incomprehensible ix, 93, 138

random access structures 113

range errors 115-116

read 48-50, 129-130

readln 48-50, 132

real

arithmetic 31-32

as integer 36-37

as token 5

operators 31-32

printing 56-57

reading from textfiles 50

record 102

record-type 102-112

and with statement 105-107

assignment to variables 104

dynamic allocation of variants 141-142

field-designator 71, 104

field list 102, 108

fixed part 102

variant part 108

record variant 107-112

dynamic allocation of 141-142

rule summary 111-112

recursion 75, 78

reference

of pointer variable 136

representation 4

regions 59-63

relational-operator 39-40

relational operators 45-46

and sets 46, 124

and string types 46, 118

precedence of 39

repeat 22

repeat-statement 22-24

bugs with 23

repetitive-statement 8

required ordinal types 32-35, 97

required functions 35-38

see also by name
required procedures

dispose 138, 142

get 128

new 137, 141

pack, unpack 119-120

page 132-133

put 128

read 48-50, 129-130

readln 48-50, 132

reset 127-128

rewrite 127

write 52-54, 129-130

writeln 52-54, 132

required identifiers, scope of 63

reserved words 3

reset 127-128

applied to textfile 128

result type 76

rewrite 127

round 36

same types 95-96

scalar types

see ordinal types

scale-factor 5

scope 59-63

of field identifiers 103

of identifiers 59-60, 62-63

of ordinal type constants 98-99

of variable identifiers 61

schema
see conformant array parameters

scientific notation

see floating-point notation

semicolon

and empty statement 16

as statement separator 9

bugs with 16, 19, 25

sequential access structure

see file- type

set 121
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set-constructors 122

set-types 121-125

assignment to variables 123

base type 122

cardinality 122

canonical set-of- T 122

comparison 46, 124

defining set types 121

maximum size 121

operators 44

powerset 122

side effects 79

Silverman, Rachel M. 175

sign 5

signed-integer 5, 32

signed-number 5

signed-real 5, 31

simple-expression 41

simple-statements 8

simple types 30, 96-100

boolean 33-34

char 34-35

enumerated 97-99

integer 32-33

ordinal 97

real 31-32

subrange 99-100

sin 36

special-symbols 3

sqr 36

sqrt 36

standard functions

see required functions

standard input, output 47, 63f, 131-132

standard procedures

see required procedures

statement separator 9

statements 8-29

assignment 9-10

case 20-22

compound 16-17

conditional, repetitive 8

empty 15-16

for 26-29

goto 13-15

if 17-20

procedure 12-13

repeat 22-24

simple, structured 8

threatening 27-28

while 24-25

with 105-107

stepwise refinement 72

string types 117-119

assignment to 118

constants of 66

defining type 118

null strings 35

output of 56, 118

see also character strings

structural equivalence 11

structured

constants 66

statements 8

variables 70

structured types 101-135

array 112-121

file 125-135

packed 101, 119-121

record 102-112

set 121-125

string 117-119

subprograms

as parameters 83-86

forward declaration of 86-87

functions 76-78

parameters of 79-86

procedures 73-75

subrange types 99-100

subscript 115

succ 3 7

syntax

charts 4, 4f

collected charts 160-165

tag field 107-108

tag type 108

term 41

text 131

textfiles 51-57, 131-135

end-of-line 132

reset of 128

then 17

threatening statements 27-28

to 26

tokens 3-7
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character-strings 6

directives 6, 86

identifiers 3

labels 3

numbers 5

special-symbols 3

word-symbols 3

token separators 7

totally undefined 67

transfer functions 36-37

transfer procedures 119-121

transparency 98, 100

true 33

trunc 36

truth tabless 34

type 95

type definition part 95

types

anonymous 69

array 112-121

assignment-compatibility 10-11

compatibility 10

definitions 95

denoter 68

enumerated 97-99

file 125-135

host 99

new-types 68-69, 95-96

ordinal 97

packed 101, 119-121

pointer 136-142

record 102-112

required 30, 131

same 95-96

set 121-125

simple 30, 96-100

string 117-119

structured 101-135

subrange 99-100

see also types by name
type unions 107

undefined 67

underlying type 99f

union of sets 44, 124

unpack 119-120

unsigned-constant 41

unsigned-integer 5, 32

unsigned-number 5

unsigned-real 5, 31

up-arrow

in buffer variable 127

with pointer access 139

with pointer type definition 136

user-defined

constants 65-66

ordinal types 97-100

value-conformant-array-parameters 92-94

value-parameter 80-81

actual-parameter of 81

var

in parameter declaration 81

in variable declaration 68

variables 67-71

allocation 64

assignment-compatibility 10-11

declaration 67-68

dynamically allocated 71,

global, local 61, 67, 75

scope of 61

simple, structured 70

undefined 67

variable-access 42, 70-71

as argument of variable-parameter 82

undefined 42

variable-conformant-array-parameters 92

variable-parameter 81-83

actual-parameter of 82

variant part 108

active 110

variant record

see record variant

variant-selector 108

violation 1

while 24

while-statement 24-25

bugs with 25

window, file 127

with 105

with-statement 105-107

word-symbols 3

write 52-54, 129-130

write-parameters 52, 54, 56

writeln 52-54, 132
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"It used to be that to become an expert in Standard Pascal you

needed Jensen and Wirth, the ISO Standard, a few knowledgeable

friends, and uncommon patience. Now you just need this book."

—Stuart Reges,
Stanford University


